THE GUTMAN INDEX AND THE EDGE-WIENER INDEX OF GRAPHS WITH GIVEN VERTEX-CONNECTIVITY

被引:2
|
作者
Mazorodze, Jaya Percival [1 ]
Mukwembi, Simon [1 ,2 ]
Vetrik, Tomas [3 ]
机构
[1] Univ Zimbabwe, Dept Math, Harare, Zimbabwe
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[3] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Gutman index; edge-Wiener index; vertex-connectivity; DISTANCE;
D O I
10.7151/dmgt.1900
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gutman index and the edge-Wiener index have been extensively investigated particularly in the last decade. An important stream of research on graph indices is to bound indices in terms of the order and other parameters of given graph. In this paper we present asymptotically sharp upper bounds on the Gutman index and the edge-Wiener index for graphs of given order and vertex-connectivity k, where k is a constant. Our results substantially generalize and extend known results in the area.
引用
收藏
页码:867 / 876
页数:10
相关论文
共 50 条
  • [1] GUTMAN INDEX, EDGE-WIENER INDEX AND EDGE-CONNECTIVITY
    Mazorodze, Jaya Percival
    Mukwembi, Simon
    Vetrik, Tomas
    TRANSACTIONS ON COMBINATORICS, 2020, 9 (04) : 231 - 242
  • [2] Wiener, edge-Wiener, and vertex-edge-Wiener index of Basilica graphs
    Cavaleri, Matteo
    D'Angeli, Daniele
    Donno, Alfredo
    Hammer, Stefan
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 32 - 49
  • [3] Relationship between the edge-Wiener index and the Gutman index of a graph
    Knor, Martin
    Potocnik, Primoz
    Skrekovski, Riste
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 197 - 201
  • [4] THE SECOND EDGE-WIENER INDEX OF SOME COMPOSITE GRAPHS
    Azari, M.
    Iranmanesh, A.
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (02) : 305 - 316
  • [5] On the edge-Wiener index of the disjunctive product of simple graphs
    Azari, M.
    Iranmanesh, A.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 30 (01): : 1 - 14
  • [6] THE HYPER EDGE-WIENER INDEX OF CORONA PRODUCT OF GRAPHS
    Soltani, A.
    Iranmanesh, A.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (03) : 1 - 9
  • [7] The edge-Wiener index of a graph
    Dankelmann, P.
    Gutman, I.
    Mukwembi, S.
    Swart, H. C.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3452 - 3457
  • [8] The vertex-connectivity index revisited
    Amic, D
    Beslo, D
    Lucic, B
    Nikolic, S
    Trinajstic, N
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1998, 38 (05): : 819 - 822
  • [9] The edge-Wiener index and the edge-hyper-Wiener index of phenylenes
    Pletersek, Petra Zigert
    DISCRETE APPLIED MATHEMATICS, 2019, 255 : 326 - 333
  • [10] An inequality between the edge-Wiener index and the Wiener index of a graph
    Knor, Martin
    Skrekovski, Riste
    Tepeh, Aleksandra
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 714 - 721