Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data

被引:3
|
作者
Lu, Fei [1 ]
Weitzel, Nils [2 ,3 ]
Monahan, Adam H. [4 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Heidelberg Univ, Inst Umweltphys, Heidelberg, Germany
[3] Rheinische Friedrich Wilhelms Univ Bonn, Inst Geowissensch & Meteorol, Bonn, Germany
[4] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
PALEOCLIMATE RECONSTRUCTION; POLYNOMIAL CHAOS; ASSIMILATION; CLIMATOLOGY; TEMPERATURE; LIMITATIONS; FILTERS; SPACE;
D O I
10.5194/npg-26-227-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
While nonlinear stochastic partial differential equations arise naturally in spatiotemporal modeling, inference for such systems often faces two major challenges: sparse noisy data and ill-posedness of the inverse problem of parameter estimation. To overcome the challenges, we introduce a strongly regularized posterior by normalizing the likelihood and by imposing physical constraints through priors of the parameters and states. We investigate joint parameter-state estimation by the regularized posterior in a physically motivated nonlinear stochastic energy balance model (SEBM) for paleoclimate reconstruction. The high-dimensional posterior is sampled by a particle Gibbs sampler that combines a Markov chain Monte Carlo (MCMC) method with an optimal particle filter exploiting the structure of the SEBM. In tests using either Gaussian or uniform priors based on the physical range of parameters, the regularized posteriors overcome the ill-posedness and lead to samples within physical ranges, quantifying the uncertainty in estimation. Due to the ill-posedness and the regularization, the posterior of parameters presents a relatively large uncertainty, and consequently, the maximum of the posterior, which is the minimizer in a variational approach, can have a large variation. In contrast, the posterior of states generally concentrates near the truth, substantially filtering out observation noise and reducing uncertainty in the unconstrained SEBM.
引用
收藏
页码:227 / 250
页数:24
相关论文
共 50 条
  • [1] JOINT STATE-PARAMETER ESTIMATION FOR TUMOR GROWTH MODEL
    Collin, Annabelle
    Kritter, Thibaut
    Poignard, Clair
    Saut, Olivier
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (02) : 355 - 377
  • [2] Nonlinear Joint State-Parameter Observer for VAV Damper position Estimation
    Srinivasarengan, Krishnan
    Ragot, Jose
    Maquin, Didier
    Aubrun, Christophe
    2016 3RD CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2016, : 164 - 169
  • [3] Inverse modeling and joint state-parameter estimation with a noise mapping meta-model
    Lesieur, Antoine
    Mallet, Vivien
    Aumond, Pierre
    Can, Arnaud
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (06): : 3961 - 3974
  • [4] Joint model state-parameter retrieval through the evolutionary data assimilation approach
    Dumedah, Gift
    Walker, Jeffrey P.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 2876 - 2882
  • [5] Joint state and parameter robust estimation of stochastic nonlinear systems
    Stojanovic, Vladimir
    Nedic, Novak
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (14) : 3058 - 3074
  • [6] Enhanced flood forecasting through ensemble data assimilation and joint state-parameter estimation
    Ziliani, Matteo G.
    Ghostine, Rabih
    Ait-El-Fquih, Boujemaa
    McCabe, Matthew F.
    Hoteit, Ibrahim
    JOURNAL OF HYDROLOGY, 2019, 577
  • [7] A Fokker-Planck approach to joint state-parameter estimation
    Lemos, Joao M.
    Costa, Bertinho A.
    Rocha, Conceicao
    IFAC PAPERSONLINE, 2018, 51 (15): : 389 - 394
  • [8] Two-Stage Filtering for Joint State-Parameter Estimation
    Santitissadeekorn, Naratip
    Jones, Christopher
    MONTHLY WEATHER REVIEW, 2015, 143 (06) : 2028 - 2042
  • [9] Joint state-parameter estimation for a control-oriented LES wind farm model
    Doekemeijer, B. M.
    Boersma, S.
    Pao, L. Y.
    van Wingerden, J. W.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [10] Joint state and parameter estimation for uncertain stochastic nonlinear polynomial systems
    Basin, Michael V.
    Loukianov, Alexander G.
    Hernandez-Gonzalez, Miguel
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (07) : 1200 - 1208