Inverse modeling and joint state-parameter estimation with a noise mapping meta-model

被引:1
|
作者
Lesieur, Antoine [1 ]
Mallet, Vivien [1 ]
Aumond, Pierre [2 ]
Can, Arnaud [2 ]
机构
[1] INRIA, ANGE, Paris, France
[2] Univ Gustave Eiffel, CEREMA, IFSTTAR, Unite Mixte Rech Acoust Environm UMRAE, F-44344 Bouguenais, France
来源
关键词
SPATIAL INTERPOLATION; URBAN; ASSIMILATION; ALGORITHMS; PATHS;
D O I
10.1121/10.0004984
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This study aims to produce dynamic noise maps based on a noise model and acoustic measurements. To do so, inverse modeling and joint state-parameter methods are proposed. These methods estimate the input parameters that optimize a given cost function calculated with the resulting noise map and the noise observations. The accuracy of these two methods is compared with a noise map generated with a meta-model and with a classical data assimilation method called best linear unbiased estimator. The accuracy of the data assimilation processes is evaluated using a "leave-one-out" cross-validation method. The most accurate noise map is generated computing a joint state-parameter estimation algorithm without a priori knowledge about traffic and weather and shows a reduction of approximately 26% in the root mean square error from 3.5 to 2.6 dB compared to the reference meta-model noise map with 16 microphones over an area of 3 km(2).
引用
收藏
页码:3961 / 3974
页数:14
相关论文
共 50 条
  • [1] JOINT STATE-PARAMETER ESTIMATION FOR TUMOR GROWTH MODEL
    Collin, Annabelle
    Kritter, Thibaut
    Poignard, Clair
    Saut, Olivier
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (02) : 355 - 377
  • [2] A Fokker-Planck approach to joint state-parameter estimation
    Lemos, Joao M.
    Costa, Bertinho A.
    Rocha, Conceicao
    IFAC PAPERSONLINE, 2018, 51 (15): : 389 - 394
  • [3] Two-Stage Filtering for Joint State-Parameter Estimation
    Santitissadeekorn, Naratip
    Jones, Christopher
    MONTHLY WEATHER REVIEW, 2015, 143 (06) : 2028 - 2042
  • [4] Joint state-parameter estimation for a control-oriented LES wind farm model
    Doekemeijer, B. M.
    Boersma, S.
    Pao, L. Y.
    van Wingerden, J. W.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2018), 2018, 1037
  • [5] Nonlinear Joint State-Parameter Observer for VAV Damper position Estimation
    Srinivasarengan, Krishnan
    Ragot, Jose
    Maquin, Didier
    Aubrun, Christophe
    2016 3RD CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2016, : 164 - 169
  • [6] ROBUST FILTERING FOR JOINT STATE-PARAMETER ESTIMATION IN DISTRIBUTED MECHANICAL SYSTEMS
    Chapelle, Dominique
    Moireau, Philippe
    Le Tallec, Patrick
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) : 65 - 84
  • [7] Data assimilation for urban noise mapping with a meta-model
    Lesieur, Antoine
    Mallet, Vivien
    Aumond, Pierre
    Can, Arnaud
    APPLIED ACOUSTICS, 2021, 178
  • [8] Joint state-parameter estimation of a nonlinear stochastic energy balance model from sparse noisy data
    Lu, Fei
    Weitzel, Nils
    Monahan, Adam H.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2019, 26 (03) : 227 - 250
  • [9] Joint State and Parameter Estimation for Stationary ARMA Model with Unknown Noise Model
    Li, Shuhui
    Feng, Xiaoxue
    Lin, Honghua
    Pan, Feng
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2231 - 2236
  • [10] Enhanced flood forecasting through ensemble data assimilation and joint state-parameter estimation
    Ziliani, Matteo G.
    Ghostine, Rabih
    Ait-El-Fquih, Boujemaa
    McCabe, Matthew F.
    Hoteit, Ibrahim
    JOURNAL OF HYDROLOGY, 2019, 577