Inverse modeling and joint state-parameter estimation with a noise mapping meta-model

被引:1
|
作者
Lesieur, Antoine [1 ]
Mallet, Vivien [1 ]
Aumond, Pierre [2 ]
Can, Arnaud [2 ]
机构
[1] INRIA, ANGE, Paris, France
[2] Univ Gustave Eiffel, CEREMA, IFSTTAR, Unite Mixte Rech Acoust Environm UMRAE, F-44344 Bouguenais, France
来源
关键词
SPATIAL INTERPOLATION; URBAN; ASSIMILATION; ALGORITHMS; PATHS;
D O I
10.1121/10.0004984
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This study aims to produce dynamic noise maps based on a noise model and acoustic measurements. To do so, inverse modeling and joint state-parameter methods are proposed. These methods estimate the input parameters that optimize a given cost function calculated with the resulting noise map and the noise observations. The accuracy of these two methods is compared with a noise map generated with a meta-model and with a classical data assimilation method called best linear unbiased estimator. The accuracy of the data assimilation processes is evaluated using a "leave-one-out" cross-validation method. The most accurate noise map is generated computing a joint state-parameter estimation algorithm without a priori knowledge about traffic and weather and shows a reduction of approximately 26% in the root mean square error from 3.5 to 2.6 dB compared to the reference meta-model noise map with 16 microphones over an area of 3 km(2).
引用
收藏
页码:3961 / 3974
页数:14
相关论文
共 50 条
  • [41] A Hierarchical Approach for Joint Parameter and State Estimation of a Bilinear System with Autoregressive Noise
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    MATHEMATICS, 2019, 7 (04)
  • [42] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147
  • [43] A meta-model of group for urban mobility modeling
    Marilleau, N
    Lang, C
    Chatonnay, P
    Philippe, L
    Proceedings of the 2005 International Conference on Active Media Technology (AMT 2005), 2005, : 397 - 400
  • [44] A meta-model framework for software process modeling
    Visconti, M
    Cook, CR
    PRODUCT FOCUSED SOFTWARE PROCESS IMPROVEMENT, PROCEEDINGS, 2002, 2559 : 532 - 545
  • [45] Combined State-Parameter Estimation with the LETKF for Convective-Scale Weather Forecasting
    Ruckstuhl, Y.
    Janjic, T.
    MONTHLY WEATHER REVIEW, 2020, 148 (04) : 1607 - 1628
  • [46] JOINT PARAMETER-STATE ESTIMATION
    JAKEMAN, A
    YOUNG, P
    ELECTRONICS LETTERS, 1979, 15 (19) : 582 - 583
  • [47] A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models
    Gharamti, Mohamad E.
    Ait-El-Fquih, Boujemaa
    Hoteit, Ibrahim
    DYNAMIC DATA-DRIVEN ENVIRONMENTAL SYSTEMS SCIENCE, DYDESS 2014, 2015, 8964 : 207 - 214
  • [48] Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter
    赖瑞勋
    方红卫
    何国建
    余欣
    杨明
    王明
    Journal of Hydrodynamics, 2013, 25 (04) : 564 - 571
  • [49] Key Parameter Oriented Performance Meta-Model of Avionics System
    Wu, Yaliang
    Yao, Shuzhen
    Tan, Huobin
    PROCEEDINGS OF THE 2012 SECOND INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2012), 2012, : 1326 - 1329
  • [50] An agent based meta-model for urban mobility modeling
    Marilleau, N
    DFMA '05: FIRST INTERNATIONAL CONFERENCE ON DISTRIBUTED FRAMEWORKS FOR MULTIMEDIA APPLICATIONS, PROCEEDINGS, 2004, : 168 - 175