Singular limit of an Allen-Cahn equation with nonlinear diffusion

被引:1
|
作者
El Kettani, Perla [1 ]
Funaki, Tadahisa [2 ,3 ]
Hilhorst, Danielle [4 ,5 ]
Park, Hyunjoon [6 ]
Sethuraman, Sunder [7 ]
机构
[1] Univ Toulon & Var, Toulon, France
[2] Univ Tokyo, Grad Sch Math Sci, Dept Math, Tokyo, Japan
[3] Waseda Univ, Dept Math, Tokyo, Japan
[4] Paris Saclay Univ, CNRS, Orsay, France
[5] Paris Saclay Univ, Lab Math, Orsay, France
[6] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[7] Univ Arizona, Dept Math, Tucson, AZ USA
关键词
Allen-Cahn equation; mean curvature flow; singular limit; nonlinear diffusion; interface; surface tension; MOTION; GENERATION; INTERFACE;
D O I
10.2140/tunis.2022.4.719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling limit of certain interacting particle systems. We investigate its singular limit and show the generation and propagation of an interface in the limit. The evolution of this limit interface is governed by mean curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter emerging from the nonlinearity in our equation.
引用
收藏
页码:719 / 754
页数:37
相关论文
共 50 条
  • [1] Singular limit of a stochastic Allen-Cahn equation with nonlinear diffusion
    El Kettani, Perla
    Hilhorst, Danielle
    Park, Hyunjoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 400 : 146 - 188
  • [2] Dispersal towards food: the singular limit of an Allen-Cahn equation
    Hilhorst, Danielle
    Kim, Yong-Jung
    Kwon, Dohyun
    Thanh Nam Nguyen
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (03) : 531 - 565
  • [3] Generation of Interface for an Allen-Cahn Equation with Nonlinear Diffusion
    Alfaro, M.
    Hilhorst, D.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (05) : 1 - 12
  • [4] On an anisotropic doubly nonlinear Allen-Cahn equation with singular potentials
    Makki, Ahmad
    Miranville, Alain
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (01) : 37 - 55
  • [5] ON SINGULAR LIMIT OF A NONLINEAR p-ORDER EQUATION RELATED TO CAHN-HILLIARD AND ALLEN-CAHN EVOLUTIONS
    Pocci, Cristina
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (03): : 517 - 530
  • [6] The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system
    Alfaro, Matthieu
    Hilhorst, Danielle
    Matano, Hiroshi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) : 505 - 565
  • [7] THE ALLEN-CAHN EQUATION WITH NONLINEAR OF RADIAL SOLUTIONS
    Alfaro, Matthieu
    Jouan, Philippe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024,
  • [8] Lagrange multiplier and singular limit of double obstacle problems for the Allen-Cahn equation with constraint
    Farshbaf-Shaker, Mohammad Hassan
    Fukao, Takeshi
    Yamazaki, Noriaki
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 5 - 21
  • [9] The stability of the equilibria of the Allen-Cahn equation with fractional diffusion
    Cheng, Hongmei
    Yuan, Rong
    APPLICABLE ANALYSIS, 2019, 98 (03) : 600 - 610
  • [10] Diffusion in Allen-Cahn equation: Normal vs anomalous
    Fan, Enyu
    Li, Changpin
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 457