Singular limit of an Allen-Cahn equation with nonlinear diffusion

被引:1
|
作者
El Kettani, Perla [1 ]
Funaki, Tadahisa [2 ,3 ]
Hilhorst, Danielle [4 ,5 ]
Park, Hyunjoon [6 ]
Sethuraman, Sunder [7 ]
机构
[1] Univ Toulon & Var, Toulon, France
[2] Univ Tokyo, Grad Sch Math Sci, Dept Math, Tokyo, Japan
[3] Waseda Univ, Dept Math, Tokyo, Japan
[4] Paris Saclay Univ, CNRS, Orsay, France
[5] Paris Saclay Univ, Lab Math, Orsay, France
[6] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[7] Univ Arizona, Dept Math, Tucson, AZ USA
关键词
Allen-Cahn equation; mean curvature flow; singular limit; nonlinear diffusion; interface; surface tension; MOTION; GENERATION; INTERFACE;
D O I
10.2140/tunis.2022.4.719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling limit of certain interacting particle systems. We investigate its singular limit and show the generation and propagation of an interface in the limit. The evolution of this limit interface is governed by mean curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter emerging from the nonlinearity in our equation.
引用
收藏
页码:719 / 754
页数:37
相关论文
共 50 条
  • [21] A WELL-POSEDNESS RESULT FOR A STOCHASTIC MASS CONSERVED ALLEN-CAHN EQUATION WITH NONLINEAR DIFFUSION
    El Kettani, Perla
    Hilhorst, Danielle
    Lee, Kai
    PROCEEDINGS OF EQUADIFF 2017 CONFERENCE, 2017, : 201 - 210
  • [22] Solutions of an Allen-Cahn model equation
    Rabinowitz, PH
    Stredulinsky, E
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 245 - 256
  • [23] On the entropy of parabolic Allen-Cahn equation
    Sun, Ao
    INTERFACES AND FREE BOUNDARIES, 2021, 23 (03) : 421 - 432
  • [24] Allen-Cahn equation with strong irreversibility
    Akagi, Goro
    Efendiev, Messoud
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (04) : 707 - 755
  • [25] Boundary interface for the Allen-Cahn equation
    Malchiodi, A.
    Wei, Juncheng
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 1 (02) : 305 - 336
  • [26] ON AN ALLEN-CAHN TYPE INTEGRODIFFERENTIAL EQUATION
    Gilardi, Gianni
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (03): : 703 - 709
  • [27] On the weakly degenerate Allen-Cahn equation
    Sonego, Maicon
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 361 - 371
  • [28] ON THE CAHN-HILLIARD/ALLEN-CAHN EQUATIONS WITH SINGULAR POTENTIALS
    Miranville, Alain
    Saoud, Wafa
    Talhouk, Raafat
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 3633 - 3651
  • [29] An Allen-Cahn equation based on an unconstrained order parameter and its Cahn-Hilliard limit
    Miranville, Alain
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)
  • [30] Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions
    Calatroni, Luca
    Colli, Pierluigi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 12 - 27