Singular limit of an Allen-Cahn equation with nonlinear diffusion

被引:1
|
作者
El Kettani, Perla [1 ]
Funaki, Tadahisa [2 ,3 ]
Hilhorst, Danielle [4 ,5 ]
Park, Hyunjoon [6 ]
Sethuraman, Sunder [7 ]
机构
[1] Univ Toulon & Var, Toulon, France
[2] Univ Tokyo, Grad Sch Math Sci, Dept Math, Tokyo, Japan
[3] Waseda Univ, Dept Math, Tokyo, Japan
[4] Paris Saclay Univ, CNRS, Orsay, France
[5] Paris Saclay Univ, Lab Math, Orsay, France
[6] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[7] Univ Arizona, Dept Math, Tucson, AZ USA
关键词
Allen-Cahn equation; mean curvature flow; singular limit; nonlinear diffusion; interface; surface tension; MOTION; GENERATION; INTERFACE;
D O I
10.2140/tunis.2022.4.719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling limit of certain interacting particle systems. We investigate its singular limit and show the generation and propagation of an interface in the limit. The evolution of this limit interface is governed by mean curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter emerging from the nonlinearity in our equation.
引用
收藏
页码:719 / 754
页数:37
相关论文
共 50 条
  • [41] ON THE EXISTENCE OF SOLUTION FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION
    Karali, Georgia
    Nagase, Yuko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (01): : 127 - 137
  • [42] Some entire solutions of the Allen-Cahn equation
    Fukao, Y
    Morita, Y
    Ninomiya, H
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (01): : 15 - 32
  • [43] Symmetry of Entire Solutions to the Allen-Cahn Equation
    Gui, Changfeng
    Zhang, Fang
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 587 - 612
  • [44] The fractional Allen-Cahn equation with the sextic potential
    Lee, Seunggyu
    Lee, Dongsun
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 351 : 176 - 192
  • [45] On the discretisation in time of the stochastic Allen-Cahn equation
    Kovacs, Mihaly
    Larsson, Stig
    Lindgren, Fredrik
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) : 966 - 995
  • [46] Interior layers for an inhomogeneous Allen-Cahn equation
    Du, Zhuoran
    Gui, Changfeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (02) : 215 - 239
  • [47] A hybrid FEM for solving the Allen-Cahn equation
    Shin, Jaemin
    Park, Seong-Kwan
    Kim, Junseok
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 606 - 612
  • [48] Stochastic Allen-Cahn equation with logarithmic potential
    Bertacco, Federico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [49] The hyperbolic Allen-Cahn equation: exact solutions
    Nizovtseva, I. G.
    Galenko, P. K.
    Alexandrov, D. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (43)
  • [50] Transition layer for the heterogeneous Allen-Cahn equation
    Mahmoudi, Fethi
    Malchiodi, Andrea
    Wei, Juncheng
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03): : 609 - 631