Singular limit of an Allen-Cahn equation with nonlinear diffusion

被引:1
|
作者
El Kettani, Perla [1 ]
Funaki, Tadahisa [2 ,3 ]
Hilhorst, Danielle [4 ,5 ]
Park, Hyunjoon [6 ]
Sethuraman, Sunder [7 ]
机构
[1] Univ Toulon & Var, Toulon, France
[2] Univ Tokyo, Grad Sch Math Sci, Dept Math, Tokyo, Japan
[3] Waseda Univ, Dept Math, Tokyo, Japan
[4] Paris Saclay Univ, CNRS, Orsay, France
[5] Paris Saclay Univ, Lab Math, Orsay, France
[6] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[7] Univ Arizona, Dept Math, Tucson, AZ USA
关键词
Allen-Cahn equation; mean curvature flow; singular limit; nonlinear diffusion; interface; surface tension; MOTION; GENERATION; INTERFACE;
D O I
10.2140/tunis.2022.4.719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an Allen-Cahn equation with nonlinear diffusion, motivated by the study of the scaling limit of certain interacting particle systems. We investigate its singular limit and show the generation and propagation of an interface in the limit. The evolution of this limit interface is governed by mean curvature flow with a novel, homogenized speed in terms of a surface tension-mobility parameter emerging from the nonlinearity in our equation.
引用
收藏
页码:719 / 754
页数:37
相关论文
共 50 条
  • [31] OPTIMAL CONTROL OF AN ALLEN-CAHN EQUATION WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITION
    Colli, Pierluigi
    Sprekels, Juergen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (01) : 213 - 234
  • [33] NONLINEAR STABILITY OF THE IMPLICIT-EXPLICIT METHODS FOR THE ALLEN-CAHN EQUATION
    Feng, Xinlong
    Song, Huailing
    Tang, Tao
    Yang, Jiang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 679 - 695
  • [34] THE ALLEN-CAHN EQUATION WITH NONLINEAR TRUNCATED LAPLACIANS: DESCRIPTION OF RADIAL SOLUTIONS
    Alfaro, Matthieu
    Jouan, Philippe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (06) : 1891 - 1910
  • [35] NUMERICAL STUDIES OF DISCRETE APPROXIMATIONS TO THE ALLEN-CAHN EQUATION IN THE SHARP INTERFACE LIMIT
    Zhang, Jian
    Du, Qiang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 3042 - 3063
  • [36] SHARP INTERFACE LIMIT FOR STOCHASTICALLY PERTURBED MASS CONSERVING ALLEN-CAHN EQUATION
    Funaki, Tadahisa
    Yokoyama, Satoshi
    ANNALS OF PROBABILITY, 2019, 47 (01): : 560 - 612
  • [37] On an anisotropic doubly nonlinear Allen–Cahn equation with singular potentials
    Ahmad Makki
    Alain Miranville
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 37 - 55
  • [38] On a Cahn-Hilliard/Allen-Cahn system coupled with a type III heat equation and singular potentials
    Makki, Ahmad
    Miranville, Alain
    Saoud, Wafa
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [39] Malliavin calculus for the stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion
    Antonopoulou, Dimitra C.
    Farazakis, Dimitris
    Karali, Georgia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (07) : 3168 - 3211
  • [40] Global Dynamics of the Cahn-Hilliard/Allen-Cahn Equation
    Ma, Mingze
    Zhao, Xiaopeng
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (02) : 156 - 172