Lagrange multiplier and singular limit of double obstacle problems for the Allen-Cahn equation with constraint

被引:1
|
作者
Farshbaf-Shaker, Mohammad Hassan [1 ]
Fukao, Takeshi [2 ]
Yamazaki, Noriaki [3 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[2] Kyoto Univ Educ, Dept Math, Fushimi Ku, 1 Fujinomori, Kyoto 6128522, Japan
[3] Kanagawa Univ, Fac Engn, Dept Math, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan
关键词
Allen-Cahn equation; singular limit; double obstacle; Lagrange multiplier; subdifferential; dynamic boundary condition; PERTURBATIONS; INTERFACES; MOTION;
D O I
10.1002/mma.3905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the properties of the Lagrange multiplier for an Allen-Cahn equation with a double obstacle potential. Here, the dynamic boundary condition, including the Laplace-Beltrami operator on the boundary, is investigated. We then establish the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier of our problem. We present remarks on a trace problem as well as on the Neumann boundary condition. Moreover, we describe a numerical experiment for a problem with Neumann boundary condition using the Lagrange multiplier. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 50 条
  • [1] The limit of the anisotropic double-obstacle Allen-Cahn equation
    Elliott, CM
    Schatzle, R
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 1217 - 1234
  • [2] Singular limit of an Allen-Cahn equation with nonlinear diffusion
    El Kettani, Perla
    Funaki, Tadahisa
    Hilhorst, Danielle
    Park, Hyunjoon
    Sethuraman, Sunder
    TUNISIAN JOURNAL OF MATHEMATICS, 2022, 4 (04) : 719 - 754
  • [3] A conservative Allen-Cahn equation with a curvature-dependent Lagrange multiplier
    Kwak, Soobin
    Yang, Junxiang
    Kim, Junseok
    APPLIED MATHEMATICS LETTERS, 2022, 126
  • [4] The limit of the fully anisotropic double-obstacle Allen-Cahn equation in the nonsmooth case
    Elliott, CM
    Schatzle, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (02) : 274 - 303
  • [5] Singular limit of a stochastic Allen-Cahn equation with nonlinear diffusion
    El Kettani, Perla
    Hilhorst, Danielle
    Park, Hyunjoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 400 : 146 - 188
  • [6] Dispersal towards food: the singular limit of an Allen-Cahn equation
    Hilhorst, Danielle
    Kim, Yong-Jung
    Kwon, Dohyun
    Thanh Nam Nguyen
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (03) : 531 - 565
  • [7] A conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier
    Kim, Junseok
    Lee, Seunggyu
    Choi, Yongho
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 84 : 11 - 17
  • [8] The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system
    Alfaro, Matthieu
    Hilhorst, Danielle
    Matano, Hiroshi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) : 505 - 565
  • [9] Convergence of a mass conserving Allen-Cahn equation whose Lagrange multiplier is nonlocal and local
    Alfaro, Matthieu
    Alifrangis, Pierre
    INTERFACES AND FREE BOUNDARIES, 2014, 16 (02) : 243 - 268
  • [10] New approximate method for the Allen-Cahn equation with double-obstacle constraint and stability criteria for numerical simulations
    Suzuki, Tomoyuki
    Takasao, Keisuke
    Yamazaki, Noriaki
    AIMS MATHEMATICS, 2016, 1 (03): : 288 - 317