Lagrange multiplier and singular limit of double obstacle problems for the Allen-Cahn equation with constraint

被引:1
|
作者
Farshbaf-Shaker, Mohammad Hassan [1 ]
Fukao, Takeshi [2 ]
Yamazaki, Noriaki [3 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[2] Kyoto Univ Educ, Dept Math, Fushimi Ku, 1 Fujinomori, Kyoto 6128522, Japan
[3] Kanagawa Univ, Fac Engn, Dept Math, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan
关键词
Allen-Cahn equation; singular limit; double obstacle; Lagrange multiplier; subdifferential; dynamic boundary condition; PERTURBATIONS; INTERFACES; MOTION;
D O I
10.1002/mma.3905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the properties of the Lagrange multiplier for an Allen-Cahn equation with a double obstacle potential. Here, the dynamic boundary condition, including the Laplace-Beltrami operator on the boundary, is investigated. We then establish the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier of our problem. We present remarks on a trace problem as well as on the Neumann boundary condition. Moreover, we describe a numerical experiment for a problem with Neumann boundary condition using the Lagrange multiplier. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 50 条
  • [31] Boundary interface for the Allen-Cahn equation
    Malchiodi, A.
    Wei, Juncheng
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 1 (02) : 305 - 336
  • [32] ON AN ALLEN-CAHN TYPE INTEGRODIFFERENTIAL EQUATION
    Gilardi, Gianni
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (03): : 703 - 709
  • [33] On the weakly degenerate Allen-Cahn equation
    Sonego, Maicon
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 361 - 371
  • [34] ON THE CAHN-HILLIARD/ALLEN-CAHN EQUATIONS WITH SINGULAR POTENTIALS
    Miranville, Alain
    Saoud, Wafa
    Talhouk, Raafat
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 3633 - 3651
  • [35] An Allen-Cahn equation based on an unconstrained order parameter and its Cahn-Hilliard limit
    Miranville, Alain
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (02)
  • [36] CONVERGENCE OF THE ALLEN-CAHN EQUATION WITH CONSTRAINT TO BRAKKE'S MEAN CURVATURE FLOW
    Takasao, Keisuke
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2017, 22 (9-10) : 765 - 792
  • [37] Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions
    Calatroni, Luca
    Colli, Pierluigi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 79 : 12 - 27
  • [38] OPTIMAL CONTROL OF AN ALLEN-CAHN EQUATION WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITION
    Colli, Pierluigi
    Sprekels, Juergen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (01) : 213 - 234
  • [39] NUMERICAL STUDIES OF DISCRETE APPROXIMATIONS TO THE ALLEN-CAHN EQUATION IN THE SHARP INTERFACE LIMIT
    Zhang, Jian
    Du, Qiang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 3042 - 3063
  • [40] Half-space theorems for the Allen-Cahn equation and related problems
    Hamel, Francois
    Liu, Yong
    Sicbaldi, Pieralberto
    Wang, Kelei
    Wei, Juncheng
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 770 : 113 - 133