Lagrange multiplier and singular limit of double obstacle problems for the Allen-Cahn equation with constraint

被引:1
|
作者
Farshbaf-Shaker, Mohammad Hassan [1 ]
Fukao, Takeshi [2 ]
Yamazaki, Noriaki [3 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[2] Kyoto Univ Educ, Dept Math, Fushimi Ku, 1 Fujinomori, Kyoto 6128522, Japan
[3] Kanagawa Univ, Fac Engn, Dept Math, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan
关键词
Allen-Cahn equation; singular limit; double obstacle; Lagrange multiplier; subdifferential; dynamic boundary condition; PERTURBATIONS; INTERFACES; MOTION;
D O I
10.1002/mma.3905
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the properties of the Lagrange multiplier for an Allen-Cahn equation with a double obstacle potential. Here, the dynamic boundary condition, including the Laplace-Beltrami operator on the boundary, is investigated. We then establish the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier of our problem. We present remarks on a trace problem as well as on the Neumann boundary condition. Moreover, we describe a numerical experiment for a problem with Neumann boundary condition using the Lagrange multiplier. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 50 条
  • [41] SHARP INTERFACE LIMIT FOR STOCHASTICALLY PERTURBED MASS CONSERVING ALLEN-CAHN EQUATION
    Funaki, Tadahisa
    Yokoyama, Satoshi
    ANNALS OF PROBABILITY, 2019, 47 (01): : 560 - 612
  • [42] On a Cahn-Hilliard/Allen-Cahn system coupled with a type III heat equation and singular potentials
    Makki, Ahmad
    Miranville, Alain
    Saoud, Wafa
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [43] Global Dynamics of the Cahn-Hilliard/Allen-Cahn Equation
    Ma, Mingze
    Zhao, Xiaopeng
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (02) : 156 - 172
  • [44] ON THE EXISTENCE OF SOLUTION FOR A CAHN-HILLIARD/ALLEN-CAHN EQUATION
    Karali, Georgia
    Nagase, Yuko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2014, 7 (01): : 127 - 137
  • [45] Some entire solutions of the Allen-Cahn equation
    Fukao, Y
    Morita, Y
    Ninomiya, H
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (01): : 15 - 32
  • [46] Symmetry of Entire Solutions to the Allen-Cahn Equation
    Gui, Changfeng
    Zhang, Fang
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 587 - 612
  • [47] The fractional Allen-Cahn equation with the sextic potential
    Lee, Seunggyu
    Lee, Dongsun
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 351 : 176 - 192
  • [48] On the discretisation in time of the stochastic Allen-Cahn equation
    Kovacs, Mihaly
    Larsson, Stig
    Lindgren, Fredrik
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) : 966 - 995
  • [49] Interior layers for an inhomogeneous Allen-Cahn equation
    Du, Zhuoran
    Gui, Changfeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (02) : 215 - 239
  • [50] A hybrid FEM for solving the Allen-Cahn equation
    Shin, Jaemin
    Park, Seong-Kwan
    Kim, Junseok
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 606 - 612