Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9

被引:329
|
作者
Gupta, Rajat M.
Musunuru, Kiran
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] Brigham & Womens Hosp, Div Cardiovasc Med, Boston, MA 02115 USA
来源
JOURNAL OF CLINICAL INVESTIGATION | 2014年 / 124卷 / 10期
关键词
ZINC-FINGER NUCLEASES; ONE-STEP GENERATION; HUMAN-CELLS; HOMOLOGOUS RECOMBINATION; EMBRYO MICROINJECTION; KNOCKOUT RATS; GENOME MODIFICATION; EFFECTOR NUCLEASES; BETA-GLOBIN; HUMAN IPSCS;
D O I
10.1172/JCI72992
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build-anticipation for this prospect.
引用
收藏
页码:4154 / 4161
页数:8
相关论文
共 50 条
  • [41] Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing
    Sowmya, S. V.
    Augustine, Dominic
    Mushtaq, Shazia
    Baeshen, Hosam Ali
    Ashi, Heba
    Hassan, Reem Nabil
    Alshahrani, Mohammed
    Patil, Shankargouda
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [42] CRISPR-Cas9: a genetic tool to study gene functions in marine metazoans
    Moran-Garay, Sara Yexalen
    Rojo-Arreola, Liliana
    REVISTA DE BIOLOGIA MARINA Y OCEANOGRAFIA, 2022, 57 (02): : 67 - 79
  • [43] CRISPR-Cas9: from Genome Editing to Cancer Research
    Chen, Si
    Sun, Heng
    Miao, Kai
    Deng, Chu-Xia
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2016, 12 (12): : 1427 - 1436
  • [44] CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia
    Chadwick, Alexandra C.
    Musunuru, Kiran
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2018, 38 (01) : 12 - 18
  • [45] Exploring the potential of genome editing CRISPR-Cas9 technology
    Singh, Vijai
    Braddick, Darren
    Dhar, Pawan Kumar
    GENE, 2017, 599 : 1 - 18
  • [46] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Ferrara, Massimo
    Haidukowski, Miriam
    Logrieco, Antonio F.
    Leslie, John F.
    Mule, Giuseppina
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [47] Temperature effect on CRISPR-Cas9 mediated genome editing
    Xiang, Guanghai
    Zhang, Xingying
    An, Chenrui
    Cheng, Chen
    Wang, Haoyi
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (04) : 199 - 205
  • [48] CRISPR-Cas9 MEDIATED GENOME EDITING IN ESCHERICHIA COLI
    Al-Wawi, M. Z.
    Hassan, R. M.
    Mohamed, M. E.
    Khan, M. F.
    Magaogao, M.
    Hossain, A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2019, 10 (07): : 3373 - 3377
  • [49] Strategies for Efficient Genome Editing Using CRISPR-Cas9
    Farboud, Behnom
    Severson, Aaron F.
    Meyer, Barbara J.
    GENETICS, 2019, 211 (02) : 431 - 457
  • [50] Application of CRISPR-Cas9 gene editing to treat HBV
    Yan, Kun
    Feng, Jiangpeng
    Xiong, Yong
    Chen, Yu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (30): : 3142 - 3150