Exploring the potential of genome editing CRISPR-Cas9 technology

被引:84
|
作者
Singh, Vijai [1 ]
Braddick, Darren [1 ]
Dhar, Pawan Kumar [2 ]
机构
[1] Univ Paris Saclay, Inst Syst & Synthet Biol, Genopole, CNRS,UEVE, Genopole Campus 1,Batiment 6,5 Rue Henri Desbruer, F-91030 Evry, France
[2] Jawaharlal Nehru Univ, Sch Biotechnol, Chem & Synthet Biol Grp, New Delhi 110067, India
关键词
CRISPR-Cas9; Genome editing; sgRNA; Indel; CRISPRi; Repression; Activation; Gene therapy; HEPATITIS-B-VIRUS; SHORT PALINDROMIC REPEATS; RNA-GUIDED ENDONUCLEASE; ZINC-FINGER NUCLEASES; SEQUENCE-SPECIFIC ANTIMICROBIALS; MEDIATED TARGETED INTEGRATION; STAPHYLOCOCCUS-AUREUS CAS9; PLURIPOTENT STEM-CELLS; CRISPR/CAS9; SYSTEM; ESCHERICHIA-COLI;
D O I
10.1016/j.gene.2016.11.008
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
CRISPR-Cas9 is an RNA-mediated adaptive immune system that protects bacteria and archaea from viruses or plasmids. Herein we discuss the recent development of CRISPR-Cas9 into a key technology for genome editing, targeting, and regulation in a wide range of organisms and cell types. It requires a custom designed single guide-RNA (sgRNA), a Cas9 endonuclease, and PAM sequences in the target region. The sgRNA-Cas9 complex binds to its target and creates a double-strand break (DSB) that can be repaired by non-homologous end joining (NHEJ) or by the homology-directed repair (HDR) pathway, modifying or permanently replacing the genomic target sequence. Additionally, we highlight recent advances in the repurposing of CRISPR-Cas9 for repression, activation, and loci imaging. In this review, we underline the current progress and the future potential of the CRISPR-Cas9 system towards biomedical, therapeutic, industrial, and biotechnological applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] A glance at genome editing with CRISPR-Cas9 technology
    Barman, Antara
    Deb, Bornali
    Chakraborty, Supriyo
    [J]. CURRENT GENETICS, 2020, 66 (03) : 447 - 462
  • [2] Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma
    Liu, Tang
    Shen, Jacson K.
    Li, Zhihong
    Choy, Edwin
    Hornicek, Francis J.
    Duan, Zhenfeng
    [J]. CANCER LETTERS, 2016, 373 (01) : 109 - 118
  • [3] Genome editing by CRISPR-Cas9 technology in Petunia hybrida
    Chopy, M.
    Morel, P.
    Bento, S. Rodrigues
    Vandenbussche, M.
    [J]. XXVI INTERNATIONAL EUCARPIA SYMPOSIUM SECTION ORNAMENTALS: EDITING NOVELTY, 2020, 1283 : 209 - 217
  • [4] Bioethical issues in genome editing by CRISPR-Cas9 technology
    Ayanoglu, Fatma Betul
    Elcin, Ayse Eser
    Elcin, Yasar Murat
    [J]. TURKISH JOURNAL OF BIOLOGY, 2020, 44 (02) : 110 - 120
  • [5] Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme
    Al-Sammarraie, Nadia
    Ray, Swapan K.
    [J]. CELLS, 2021, 10 (09)
  • [6] The Implications of CRISPR-Cas9 Genome Editing for IR
    Perkons, Nicholas R.
    Sheth, Rahul
    Ackerman, Daniel
    Chen, James
    Saleh, Kamiel
    Hunt, Stephen J.
    Nadolski, Gregory J.
    Shi, Junwei
    Gade, Terence P.
    [J]. JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2018, 29 (09) : 1264 - 1267
  • [7] Development and Applications of CRISPR-Cas9 for Genome Editing
    Zhang, Feng
    [J]. HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [8] CRISPR-Cas9 Genome Editing of Plasmodium knowlesi
    Mohring, Franziska
    Hart, Melissa N.
    Patel, Avnish
    Baker, David A.
    Moon, Robert W.
    [J]. BIO-PROTOCOL, 2020, 10 (04):
  • [9] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [10] CRISPR-Cas9 Mediated Genome Editing in Drosophila
    Peng, Ping
    Wang, Xia
    Shen, Da
    Sun, Jin
    Jia, Yu
    Xu, Rong-Gang
    Zhu, Li-Fei
    Ni, Jian-Quan
    [J]. BIO-PROTOCOL, 2019, 9 (02):