Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma

被引:30
|
作者
Liu, Tang [1 ,2 ,3 ]
Shen, Jacson K. [1 ,2 ]
Li, Zhihong [3 ]
Choy, Edwin [1 ,2 ]
Hornicek, Francis J. [1 ,2 ]
Duan, Zhenfeng [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Dept Orthopaed Surg, Sarcoma Biol Lab, 55 Fruit St,Jackson 1115, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, 55 Fruit St,Jackson 1115, Boston, MA 02114 USA
[3] Cent South Univ, Xiangya Hosp 2, Dept Orthopaed, 139 Renmin Rd, Changsha 410011, Hunan, Peoples R China
基金
美国国家卫生研究院;
关键词
CRISPR-Cas9; Sarcoma; Cancer modeling; Gene therapy; MOUSE MODEL; CHROMOSOMAL TRANSLOCATIONS; ANTITUMOR-ACTIVITY; CELLULAR-ORIGINS; NUCLEAR EXPORT; CANCER; P53; CRISPR/CAS9; TUMOR; EXPRESSION;
D O I
10.1016/j.canlet.2016.01.030
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 50 条
  • [1] Development and Applications of CRISPR-Cas9 for Genome Editing
    Zhang, Feng
    [J]. HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [2] Exploring the potential of genome editing CRISPR-Cas9 technology
    Singh, Vijai
    Braddick, Darren
    Dhar, Pawan Kumar
    [J]. GENE, 2017, 599 : 1 - 18
  • [3] Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme
    Al-Sammarraie, Nadia
    Ray, Swapan K.
    [J]. CELLS, 2021, 10 (09)
  • [4] A glance at genome editing with CRISPR-Cas9 technology
    Barman, Antara
    Deb, Bornali
    Chakraborty, Supriyo
    [J]. CURRENT GENETICS, 2020, 66 (03) : 447 - 462
  • [5] Development and application of CRISPR-Cas9 for genome editing
    Zhang, Feng
    [J]. TRANSGENIC RESEARCH, 2014, 23 (05) : 842 - 842
  • [6] Genome editing by CRISPR-Cas9 technology in Petunia hybrida
    Chopy, M.
    Morel, P.
    Bento, S. Rodrigues
    Vandenbussche, M.
    [J]. XXVI INTERNATIONAL EUCARPIA SYMPOSIUM SECTION ORNAMENTALS: EDITING NOVELTY, 2020, 1283 : 209 - 217
  • [7] Bioethical issues in genome editing by CRISPR-Cas9 technology
    Ayanoglu, Fatma Betul
    Elcin, Ayse Eser
    Elcin, Yasar Murat
    [J]. TURKISH JOURNAL OF BIOLOGY, 2020, 44 (02) : 110 - 120
  • [8] Development and Applications of CRISPR-Cas9 for Genome Engineering
    Hsu, Patrick D.
    Lander, Eric S.
    Zhang, Feng
    [J]. CELL, 2014, 157 (06) : 1262 - 1278
  • [9] Development and Applications of CRISPR-Cas9 for Genome Manipulations
    Zhang, Feng
    [J]. FASEB JOURNAL, 2015, 29
  • [10] CRISPR-Cas9 in genome editing: Its function and medical applications
    Khadempar, Saedeh
    Familghadakchi, Shokoufeh
    Motlagh, Roozbeh Akbari
    Farahani, Najmeh
    Dashtiahangar, Maryam
    Rezaei, Hamzeh
    Hayat, Seyed Mohammad Gheibi
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (05) : 5751 - 5761