Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9

被引:308
|
作者
Gupta, Rajat M.
Musunuru, Kiran
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] Brigham & Womens Hosp, Div Cardiovasc Med, Boston, MA 02115 USA
来源
JOURNAL OF CLINICAL INVESTIGATION | 2014年 / 124卷 / 10期
关键词
ZINC-FINGER NUCLEASES; ONE-STEP GENERATION; HUMAN-CELLS; HOMOLOGOUS RECOMBINATION; EMBRYO MICROINJECTION; KNOCKOUT RATS; GENOME MODIFICATION; EFFECTOR NUCLEASES; BETA-GLOBIN; HUMAN IPSCS;
D O I
10.1172/JCI72992
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build-anticipation for this prospect.
引用
收藏
页码:4154 / 4161
页数:8
相关论文
共 50 条
  • [21] Development and Applications of CRISPR-Cas9 for Genome Editing
    Zhang, Feng
    [J]. HUMAN GENE THERAPY, 2014, 25 (11) : A10 - A10
  • [22] Gene Editing of Human Hepatocytes by CRISPR-Cas9
    Zhang, Qingshuo
    Tiyaboonchai, Amita
    Balaji, Niveditha
    Naugler, Willscott
    Grompe, Markus
    [J]. MOLECULAR THERAPY, 2018, 26 (05) : 367 - 367
  • [23] A Survey of Validation Strategies for CRISPR-Cas9 Editing
    Monica F. Sentmanat
    Samuel T. Peters
    Colin P. Florian
    Jon P. Connelly
    Shondra M. Pruett-Miller
    [J]. Scientific Reports, 8
  • [24] CRISPR-Cas9 Mediated Genome Editing in Drosophila
    Peng, Ping
    Wang, Xia
    Shen, Da
    Sun, Jin
    Jia, Yu
    Xu, Rong-Gang
    Zhu, Li-Fei
    Ni, Jian-Quan
    [J]. BIO-PROTOCOL, 2019, 9 (02):
  • [25] CRISPR-Cas9 Genome Editing of Plasmodium knowlesi
    Mohring, Franziska
    Hart, Melissa N.
    Patel, Avnish
    Baker, David A.
    Moon, Robert W.
    [J]. BIO-PROTOCOL, 2020, 10 (04):
  • [26] CRISPR-cas9 Gene Editing for Cystic Fibrosis
    Xia, Emily
    [J]. MOLECULAR THERAPY, 2019, 27 (04) : 196 - 196
  • [27] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [28] CRISPR-Cas9 gene editing and human diseases
    Jinka, Chaitra
    Sainath, Chithirala
    Babu, Shyamaladevi
    Chakravarthi, Chennupati Ashok
    Prasanna, Muppidi Lakshmi
    Krishnan, Madhan
    Sekar, Gayathri
    Chinnaiyan, Mayilvanan
    Kumari, Andugula Swapna
    [J]. BIOINFORMATION, 2022, 18 (11) : 1081 - 1086
  • [29] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Yuta Nihongaki
    Fuun Kawano
    Takahiro Nakajima
    Moritoshi Sato
    [J]. Nature Biotechnology, 2015, 33 : 755 - 760
  • [30] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    [J]. MICROBIOLOGY SPECTRUM, 2022, 10 (04):