Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9

被引:308
|
作者
Gupta, Rajat M.
Musunuru, Kiran
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] Brigham & Womens Hosp, Div Cardiovasc Med, Boston, MA 02115 USA
来源
JOURNAL OF CLINICAL INVESTIGATION | 2014年 / 124卷 / 10期
关键词
ZINC-FINGER NUCLEASES; ONE-STEP GENERATION; HUMAN-CELLS; HOMOLOGOUS RECOMBINATION; EMBRYO MICROINJECTION; KNOCKOUT RATS; GENOME MODIFICATION; EFFECTOR NUCLEASES; BETA-GLOBIN; HUMAN IPSCS;
D O I
10.1172/JCI72992
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build-anticipation for this prospect.
引用
收藏
页码:4154 / 4161
页数:8
相关论文
共 50 条
  • [31] CRISPR-Cas9 gene editing for patients with haemoglobinopathies
    不详
    [J]. LANCET HAEMATOLOGY, 2019, 6 (09): : E438 - E438
  • [32] Inducible in vivo genome editing with CRISPR-Cas9
    Lukas E Dow
    Jonathan Fisher
    Kevin P O'Rourke
    Ashlesha Muley
    Edward R Kastenhuber
    Geulah Livshits
    Darjus F Tschaharganeh
    Nicholas D Socci
    Scott W Lowe
    [J]. Nature Biotechnology, 2015, 33 : 390 - 394
  • [33] Development and application of CRISPR-Cas9 for genome editing
    Zhang, Feng
    [J]. TRANSGENIC RESEARCH, 2014, 23 (05) : 842 - 842
  • [34] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [35] A glance at genome editing with CRISPR-Cas9 technology
    Barman, Antara
    Deb, Bornali
    Chakraborty, Supriyo
    [J]. CURRENT GENETICS, 2020, 66 (03) : 447 - 462
  • [36] Specificity of CRISPR-Cas9 Editing in Exagamglogene Autotemcel
    Yen, Angela
    Zappala, Zachary
    Fine, Rebecca S.
    Majarian, Timothy D.
    Sripakdeevong, Parin
    Altshuler, David
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2024,
  • [37] Expanding application of CRISPR-Cas9 system in microorganisms
    Zhao, Jing
    Fang, Huan
    Zhang, Dawei
    [J]. SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2020, 5 (04) : 269 - 276
  • [38] Expanding the Biologist's Toolkit with CRISPR-Cas9
    Sternberg, Samuel H.
    Doudna, Jennifer A.
    [J]. MOLECULAR CELL, 2015, 58 (04) : 568 - 574
  • [39] CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells
    Kim, Eun Ji
    Kang, Ki Ho
    Ju, Ji Hyeon
    [J]. KOREAN JOURNAL OF INTERNAL MEDICINE, 2017, 32 (01): : 42 - 61
  • [40] CRISPR-Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications
    Kolanu, Nikhil Deep
    [J]. GLOBAL MEDICAL GENETICS, 2024, 11 (01): : 113 - 122