Global optimization of non-convex piecewise linear regression splines

被引:8
|
作者
Martinez, Nadia [1 ]
Anahideh, Hadis [2 ]
Rosenberger, Jay M. [2 ]
Martinez, Diana [3 ]
Chen, Victoria C. P. [2 ]
Wang, Bo Ping [4 ]
机构
[1] Amer Airlines Inc, 4333 Amon Carter Blvd,HDQ1 MD 5358, Ft Worth, TX 76155 USA
[2] Univ Texas Arlington, Dept Ind & Mfg Syst Engn, Arlington, TX 76019 USA
[3] TMAC, 202 E Border St,Ste 323, Arlington, TX 76010 USA
[4] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Global optimization; Branch and bound; Surrogate methods; Multivariate adaptive regression splines; Crashworthiness; Genetic algorithms; DESIGN; ALGORITHM; CRASHWORTHINESS;
D O I
10.1007/s10898-016-0494-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.
引用
收藏
页码:563 / 586
页数:24
相关论文
共 50 条
  • [11] A new accelerating method for global non-convex quadratic optimization with non-convex quadratic constraints
    Wu, Huizhuo
    Zhang, KeCun
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) : 810 - 818
  • [12] Global convergence of a curvilinear search for non-convex optimization
    Bartholomew-Biggs, Michael
    Beddiaf, Salah
    Christianson, Bruce
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2025 - 2043
  • [13] Global convergence of a curvilinear search for non-convex optimization
    Michael Bartholomew-Biggs
    Salah Beddiaf
    Bruce Christianson
    Numerical Algorithms, 2023, 92 : 2025 - 2043
  • [14] GLOBAL OPTIMIZATION FOR NON-CONVEX PROGRAMS VIA CONVEX PROXIMAL POINT METHOD
    Zhao, Yuanyi
    Xing, Wenxun
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (06) : 4591 - 4614
  • [15] Conditions for linear convergence of the gradient method for non-convex optimization
    Abbaszadehpeivasti, Hadi
    de Klerk, Etienne
    Zamani, Moslem
    OPTIMIZATION LETTERS, 2023, 17 (05) : 1105 - 1125
  • [16] Conditions for linear convergence of the gradient method for non-convex optimization
    Hadi Abbaszadehpeivasti
    Etienne de Klerk
    Moslem Zamani
    Optimization Letters, 2023, 17 : 1105 - 1125
  • [17] Non-convex global optimization by the beta algorithm: A MAPLE code
    Delgado Pineda, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E769 - E777
  • [18] Fuzzy clustering of non-convex patterns using global optimization
    Beliakov, G
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 220 - 223
  • [19] A New Filled Function Method for the Non-convex Global Optimization
    Qiao Bao-Ming
    Gao Le
    Wei Fei
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 219 - 223
  • [20] Non-convex scenario optimization
    Garatti, Simone
    Campi, Marco C.
    MATHEMATICAL PROGRAMMING, 2025, 209 (1-2) : 557 - 608