Global optimization of non-convex piecewise linear regression splines

被引:8
|
作者
Martinez, Nadia [1 ]
Anahideh, Hadis [2 ]
Rosenberger, Jay M. [2 ]
Martinez, Diana [3 ]
Chen, Victoria C. P. [2 ]
Wang, Bo Ping [4 ]
机构
[1] Amer Airlines Inc, 4333 Amon Carter Blvd,HDQ1 MD 5358, Ft Worth, TX 76155 USA
[2] Univ Texas Arlington, Dept Ind & Mfg Syst Engn, Arlington, TX 76019 USA
[3] TMAC, 202 E Border St,Ste 323, Arlington, TX 76010 USA
[4] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Global optimization; Branch and bound; Surrogate methods; Multivariate adaptive regression splines; Crashworthiness; Genetic algorithms; DESIGN; ALGORITHM; CRASHWORTHINESS;
D O I
10.1007/s10898-016-0494-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.
引用
收藏
页码:563 / 586
页数:24
相关论文
共 50 条
  • [31] An Optimization Problem with a Separable Non-Convex Objective Function and a Linear Constraint
    Djangir A. Babayev
    George I. Bell
    Journal of Heuristics, 2001, 7 : 169 - 184
  • [32] An optimization problem with a separable non-convex objective function and a linear constraint
    Babayev, DA
    Bell, GI
    JOURNAL OF HEURISTICS, 2001, 7 (02) : 169 - 184
  • [33] DYNAMIC OPTIMIZATION WITH A NON-CONVEX TECHNOLOGY - THE CASE OF A LINEAR OBJECTIVE FUNCTION
    MAJUMDAR, M
    MITRA, T
    REVIEW OF ECONOMIC STUDIES, 1983, 50 (01): : 143 - 151
  • [34] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109
  • [35] Global optimization of general non-convex problems with intermediate bilinear substructures
    Zorn, Keith
    Sahinidis, Nikolaos V.
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (03): : 442 - 462
  • [36] Trajectory planning based on non-convex global optimization for serial manipulators
    Zhang, Shiyu
    Dai, Shuling
    Zanchettin, Andrea Maria
    Villa, Renzo
    APPLIED MATHEMATICAL MODELLING, 2020, 84 : 89 - 105
  • [37] Smoothing of piecewise linear splines and the application to piecewise linear fat splines
    Department of Computer Science, University of Calgary, Calgary, Alta., Canada
    不详
    CAD Comput Aided Des, 6-7 (439-449):
  • [38] Natasha: Faster Non-Convex Stochastic Optimization via Strongly Non-Convex Parameter
    Allen-Zhu, Zeyuan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [39] Smoothing of piecewise linear splines and the application to piecewise linear fat splines
    Lin, Q
    Rokne, JG
    COMPUTER-AIDED DESIGN, 1996, 28 (6-7) : 439 - 449
  • [40] Nonparametric instrumental regression with non-convex constraints
    Grasmair, M.
    Scherzer, O.
    Vanhems, A.
    INVERSE PROBLEMS, 2013, 29 (03)