Global optimization of non-convex piecewise linear regression splines

被引:8
|
作者
Martinez, Nadia [1 ]
Anahideh, Hadis [2 ]
Rosenberger, Jay M. [2 ]
Martinez, Diana [3 ]
Chen, Victoria C. P. [2 ]
Wang, Bo Ping [4 ]
机构
[1] Amer Airlines Inc, 4333 Amon Carter Blvd,HDQ1 MD 5358, Ft Worth, TX 76155 USA
[2] Univ Texas Arlington, Dept Ind & Mfg Syst Engn, Arlington, TX 76019 USA
[3] TMAC, 202 E Border St,Ste 323, Arlington, TX 76010 USA
[4] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Global optimization; Branch and bound; Surrogate methods; Multivariate adaptive regression splines; Crashworthiness; Genetic algorithms; DESIGN; ALGORITHM; CRASHWORTHINESS;
D O I
10.1007/s10898-016-0494-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multivariate adaptive regression spline (MARS) is a statistical modeling method used to represent a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear MARS model subject to constraints that include both linear regression models and piecewise linear MARS models. MARSOPT is customized for an automotive crash safety system design problem for a major US automaker and solved using branch and bound. The solutions from MARSOPT are compared with those from customized genetic algorithms.
引用
收藏
页码:563 / 586
页数:24
相关论文
共 50 条
  • [41] Network localization by non-convex optimization
    Saha, Ananya
    Sau, Buddhadeb
    MOBIMWAREHN'17: PROCEEDINGS OF THE 7TH ACM WORKSHOP ON MOBILITY, INTERFERENCE, AND MIDDLEWARE MANAGEMENT IN HETNETS, 2017,
  • [42] Gradient Methods for Non-convex Optimization
    Jain, Prateek
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2019, 99 (02) : 247 - 256
  • [43] Parallel continuous non-convex optimization
    Holmqvist, K
    Migdalas, A
    Pardalos, PM
    PARALLEL COMPUTING IN OPTIMIZATION, 1997, 7 : 471 - 527
  • [44] Gradient Methods for Non-convex Optimization
    Prateek Jain
    Journal of the Indian Institute of Science, 2019, 99 : 247 - 256
  • [45] Replica Exchange for Non-Convex Optimization
    Dong, Jing
    Tong, Xin T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [46] Replica exchange for non-convex optimization
    Dong, Jing
    Tong, Xin T.
    1600, Microtome Publishing (22):
  • [47] Robust Optimization for Non-Convex Objectives
    Chen, Robert
    Lucier, Brendan
    Singer, Yaron
    Syrgkanis, Vasilis
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [48] CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    HIRCHE, J
    TAN, HK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (04): : 247 - 253
  • [49] EXISTENCE THEOREMS IN NON-CONVEX OPTIMIZATION
    AUBERT, G
    TAHRAOUI, R
    APPLICABLE ANALYSIS, 1984, 18 (1-2) : 75 - 100
  • [50] Accelerated algorithms for convex and non-convex optimization on manifolds
    Lin, Lizhen
    Saparbayeva, Bayan
    Zhang, Michael Minyi
    Dunson, David B.
    MACHINE LEARNING, 2025, 114 (03)