GLOBAL OPTIMIZATION FOR NON-CONVEX PROGRAMS VIA CONVEX PROXIMAL POINT METHOD

被引:0
|
作者
Zhao, Yuanyi [1 ]
Xing, Wenxun [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
Proximal point method; non-convex programming; global optimization; initial point; Lagrangian duality; ALTERNATING DIRECTION METHOD; ALGORITHM; CONVERGENCE; MULTIPLIERS;
D O I
10.3934/jimo.2022142
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a convex proximal point algorithm (CPPA) is considered for solving constrained non-convex problems, and new theoretical results are proposed. It is proved that every cluster point of CPPA is a stationary point, and the initial point of CPPA is key to global optimization. Several sufficient conditions for the initial point selection are provided for CPPA to find the global minimum. Motivated by these results, numerical experiments were conducted on non-convex quadratic programming problems with convex quadratic constraints. The performance of CPPAs was compared, with the initial point randomly selected or obtained through the Lagrangian dual problem. The numerical results demonstrate that the quality of the CPPA with the computed Lagrangian dual initial point is much better than that with the random initial point, in terms of the objective function value.
引用
收藏
页码:4591 / 4614
页数:24
相关论文
共 50 条