Fractional Brownian motion as a weak limit of Poisson shot noise processes -: with applications to finance

被引:45
|
作者
Klüuppelberg, C
Kühn, C
机构
[1] Goethe Univ Frankfurt, Frankfurt Math Finance Inst, D-60054 Frankfurt, Germany
[2] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
关键词
shot noise process; alternative stock price models; functional limit theorems; fractional Brownian motion; arbitrage; non-explosiveness of point processes;
D O I
10.1016/j.spa.2004.03.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Poisson shot noise processes that are appropriate to model stock prices and provide an economic reason for long-range dependence in asset returns. Under a regular variation condition we show that our model converges weakly to a fractional Brownian motion. Whereas fractional Brownian motion allows for arbitrage, the shot noise process itself can be chosen arbitrage-free. Using the marked point process skeleton of the shot noise process we construct a corresponding equivalent martingale measure explicitly. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 351
页数:19
相关论文
共 50 条
  • [41] On a functional limit result for increments of a fractional Brownian motion
    Wang, WS
    ACTA MATHEMATICA HUNGARICA, 2001, 93 (1-2) : 153 - 170
  • [42] Functional Limit Theorems for Multiparameter Fractional Brownian Motion
    Anatoliy Malyarenko
    Journal of Theoretical Probability, 2006, 19 : 263 - 288
  • [43] JACOBI PROCESSES DRIVEN BY FRACTIONAL BROWNIAN MOTION
    Nguyen Tien Dung
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (03): : 835 - 848
  • [44] Limit theorems for additive functionals of the fractional Brownian motion
    Jaramillo, Arturo
    Nourdin, Ivan
    Nualart, David
    Peccati, Giovanni
    ANNALS OF PROBABILITY, 2023, 51 (03): : 1066 - 1111
  • [45] Functional limit theorems for multiparameter fractional Brownian motion
    Malyarenko, Anatoliy
    JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (02) : 263 - 288
  • [46] Sub mixed fractional Brownian motion and its application to finance
    Ma, Pengcheng
    Najafi, Alireza
    Gomez-Aguilar, J. F.
    CHAOS SOLITONS & FRACTALS, 2024, 184
  • [47] Fractional Skellam processes with applications to finance
    Kerss, Alexander
    Leonenko, Nikolai N.
    Sikorskii, Alla
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) : 532 - 551
  • [48] Fractional Skellam processes with applications to finance
    Alexander Kerss
    Nikolai N. Leonenko
    Alla Sikorskii
    Fractional Calculus and Applied Analysis, 2014, 17 : 532 - 551
  • [49] Linear systems with fractional Brownian motion and Gaussian noise
    Grigoriu, Mircea
    PROBABILISTIC ENGINEERING MECHANICS, 2007, 22 (03) : 276 - 284
  • [50] Fractional Brownian Motion and Sheet as White Noise Functionals
    Zhi Yuan HUANG Chu Jin LI Jian Ping WAN Ying WU Department of Mathematics
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1183 - 1188