Fractional Skellam processes with applications to finance

被引:30
|
作者
Kerss, Alexander [1 ]
Leonenko, Nikolai N. [1 ]
Sikorskii, Alla [2 ]
机构
[1] Cardiff Univ, Cardiff Sch Math, Cardiff CF24 4 YH, S Glam, Wales
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
fractional Poisson process; fractional Skellam process; Mittag-Leffler distribution; high frequency financial data; POISSON; EQUATIONS;
D O I
10.2478/s13540-014-0184-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recent literature on high frequency financial data includes models that use the difference of two Poisson processes, and incorporate a Skellam distribution for forward prices. The exponential distribution of inter-arrival times in these models is not always supported by data. Fractional generalization of Poisson process, or fractional Poisson process, overcomes this limitation and has Mittag-Leffler distribution of inter-arrival times. This paper defines fractional Skellam processes via the time changes in Poisson and Skellam processes by an inverse of a standard stable subordinator. An application to high frequency financial data set is provided to illustrate the advantages of models based on fractional Skellam processes.
引用
收藏
页码:532 / 551
页数:20
相关论文
共 50 条
  • [1] Fractional Skellam processes with applications to finance
    Alexander Kerss
    Nikolai N. Leonenko
    Alla Sikorskii
    Fractional Calculus and Applied Analysis, 2014, 17 : 532 - 551
  • [2] Noncentral moderate deviations for fractional Skellam processes
    Lee, Jeonghwa
    Macci, Claudio
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 43 - 61
  • [3] Affine representations of fractional processes with applications in mathematical finance
    Harms, Philipp
    Stefanovits, David
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (04) : 1185 - 1228
  • [4] Fractional Skellam Process of Order k
    Kataria, K. K.
    Khandakar, M.
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (02) : 1333 - 1356
  • [5] Fractional Brownian motion as a weak limit of Poisson shot noise processes -: with applications to finance
    Klüuppelberg, C
    Kühn, C
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 113 (02) : 333 - 351
  • [6] Affine processes and applications in finance
    Duffie, D
    Filipovic, D
    Schachermayer, W
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (03): : 984 - 1053
  • [7] Fractional Wishart processes and ε-fractional Wishart processes with applications
    Yue, Jia
    Huang, Nan-jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2955 - 2977
  • [8] Fractional white noise calculus and applications to finance
    Hu, YZ
    Oksendal, B
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) : 1 - 32
  • [9] Fractional stochastic differential equations with applications to finance
    Nguyen Tien Dung
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 334 - 348
  • [10] Meixner Levy Processes and their Applications in Finance
    Sheng, Zi-Ning
    Zhang, Shi-Bin
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 2, 2011, : 264 - 267