Fractional Brownian motion as a weak limit of Poisson shot noise processes -: with applications to finance

被引:45
|
作者
Klüuppelberg, C
Kühn, C
机构
[1] Goethe Univ Frankfurt, Frankfurt Math Finance Inst, D-60054 Frankfurt, Germany
[2] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
关键词
shot noise process; alternative stock price models; functional limit theorems; fractional Brownian motion; arbitrage; non-explosiveness of point processes;
D O I
10.1016/j.spa.2004.03.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Poisson shot noise processes that are appropriate to model stock prices and provide an economic reason for long-range dependence in asset returns. Under a regular variation condition we show that our model converges weakly to a fractional Brownian motion. Whereas fractional Brownian motion allows for arbitrage, the shot noise process itself can be chosen arbitrage-free. Using the marked point process skeleton of the shot noise process we construct a corresponding equivalent martingale measure explicitly. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 351
页数:19
相关论文
共 50 条
  • [31] Path integrals for fractional Brownian motion and fractional Gaussian noise
    Meerson, Baruch
    Benichou, Olivier
    Oshanin, Gleb
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [32] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774
  • [33] Bubble Entropy of Fractional Gaussian Noise and Fractional Brownian Motion
    Manis, George
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [34] ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1567 - 1571
  • [35] CONDITIONAL LIMIT THEOREMS FOR REGULATED FRACTIONAL BROWNIAN MOTION
    Awad, Hernan
    Glynn, Peter
    ANNALS OF APPLIED PROBABILITY, 2009, 19 (06): : 2102 - 2136
  • [36] A limit theorem for occupation times of fractional Brownian motion
    Kasahara, Y
    Kosugi, N
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 67 (02) : 161 - 175
  • [37] WEAK SYMMETRIC INTEGRALS WITH RESPECT TO THE FRACTIONAL BROWNIAN MOTION
    Binotto, Giulia
    Nourdin, Ivan
    Nualart, David
    ANNALS OF PROBABILITY, 2018, 46 (04): : 2243 - 2267
  • [38] On a Functional Limit Results for Increments of a Fractional Brownian Motion
    Wensheng Wang
    Acta Mathematica Hungarica, 2001, 93 : 153 - 170
  • [39] On weak approximations of integrals with respect to fractional Brownian motion
    Slominski, Leszek
    Ziemkiewicz, Bartosz
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 543 - 552
  • [40] Weak convergence in Besov spaces to fractional Brownian motion
    Boufoussi, B
    Lakhel, EH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 39 - 44