Fractional Brownian motion as a weak limit of Poisson shot noise processes -: with applications to finance

被引:43
|
作者
Klüuppelberg, C
Kühn, C
机构
[1] Goethe Univ Frankfurt, Frankfurt Math Finance Inst, D-60054 Frankfurt, Germany
[2] Tech Univ Munich, Ctr Math Sci, D-85747 Garching, Germany
关键词
shot noise process; alternative stock price models; functional limit theorems; fractional Brownian motion; arbitrage; non-explosiveness of point processes;
D O I
10.1016/j.spa.2004.03.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Poisson shot noise processes that are appropriate to model stock prices and provide an economic reason for long-range dependence in asset returns. Under a regular variation condition we show that our model converges weakly to a fractional Brownian motion. Whereas fractional Brownian motion allows for arbitrage, the shot noise process itself can be chosen arbitrage-free. Using the marked point process skeleton of the shot noise process we construct a corresponding equivalent martingale measure explicitly. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:333 / 351
页数:19
相关论文
共 50 条
  • [31] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    [J]. PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774
  • [32] Bubble Entropy of Fractional Gaussian Noise and Fractional Brownian Motion
    Manis, George
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    [J]. 2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [33] ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1567 - 1571
  • [34] A limit theorem for occupation times of fractional Brownian motion
    Kasahara, Y
    Kosugi, N
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 67 (02) : 161 - 175
  • [35] CONDITIONAL LIMIT THEOREMS FOR REGULATED FRACTIONAL BROWNIAN MOTION
    Awad, Hernan
    Glynn, Peter
    [J]. ANNALS OF APPLIED PROBABILITY, 2009, 19 (06): : 2102 - 2136
  • [36] WEAK SYMMETRIC INTEGRALS WITH RESPECT TO THE FRACTIONAL BROWNIAN MOTION
    Binotto, Giulia
    Nourdin, Ivan
    Nualart, David
    [J]. ANNALS OF PROBABILITY, 2018, 46 (04): : 2243 - 2267
  • [37] On a Functional Limit Results for Increments of a Fractional Brownian Motion
    Wensheng Wang
    [J]. Acta Mathematica Hungarica, 2001, 93 : 153 - 170
  • [38] Weak convergence in Besov spaces to fractional Brownian motion
    Boufoussi, B
    Lakhel, EH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 39 - 44
  • [39] On weak approximations of integrals with respect to fractional Brownian motion
    Slominski, Leszek
    Ziemkiewicz, Bartosz
    [J]. STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 543 - 552
  • [40] On a functional limit result for increments of a fractional Brownian motion
    Wang, WS
    [J]. ACTA MATHEMATICA HUNGARICA, 2001, 93 (1-2) : 153 - 170