JACOBI PROCESSES DRIVEN BY FRACTIONAL BROWNIAN MOTION

被引:0
|
作者
Nguyen Tien Dung [1 ]
机构
[1] Fpt Univ, Dept Math, Hanoi, Vietnam
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2014年 / 18卷 / 03期
关键词
Jacobi processes; Fractional Brownian motion; Malliavin calculus; STOCHASTIC DIFFERENTIAL-EQUATIONS; FRACTAL FUNCTIONS; EXCHANGE-RATES; CALCULUS; INTEGRATION; RESPECT;
D O I
10.11650/tjm.18.2014.3288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a Jacobi equation driven by fractional Brownian motion with Hurst index H is an element of (1/2, 1). We first prove the existence and uniqueness of the solution. Then we investigate Malliavin differentiability and smoothness of the density of the solution. Finally, we point out that the solution can be approximated by semimartingales.
引用
收藏
页码:835 / 848
页数:14
相关论文
共 50 条