JACOBI PROCESSES DRIVEN BY FRACTIONAL BROWNIAN MOTION

被引:0
|
作者
Nguyen Tien Dung [1 ]
机构
[1] Fpt Univ, Dept Math, Hanoi, Vietnam
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2014年 / 18卷 / 03期
关键词
Jacobi processes; Fractional Brownian motion; Malliavin calculus; STOCHASTIC DIFFERENTIAL-EQUATIONS; FRACTAL FUNCTIONS; EXCHANGE-RATES; CALCULUS; INTEGRATION; RESPECT;
D O I
10.11650/tjm.18.2014.3288
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a Jacobi equation driven by fractional Brownian motion with Hurst index H is an element of (1/2, 1). We first prove the existence and uniqueness of the solution. Then we investigate Malliavin differentiability and smoothness of the density of the solution. Finally, we point out that the solution can be approximated by semimartingales.
引用
收藏
页码:835 / 848
页数:14
相关论文
共 50 条
  • [21] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S55 - S98
  • [22] Viability for differential equations driven by fractional Brownian motion
    Ciotir, Ioana
    Rascanu, Aurel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) : 1505 - 1528
  • [23] Stochastic Volterra equations driven by fractional Brownian motion
    Fan, Xiliang
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (03) : 595 - 620
  • [24] Filtering for linear systems driven by fractional Brownian motion
    Ahmed, NU
    Charalambous, CD
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (01) : 313 - 330
  • [25] Stochastic Burgers' equation driven by fractional Brownian motion
    Wang, Guolian
    Zeng, Ming
    Guo, Boling
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 210 - 222
  • [26] Stochastic Volterra equations driven by fractional Brownian motion
    Xiliang Fan
    [J]. Frontiers of Mathematics in China, 2015, 10 : 595 - 620
  • [27] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    [J]. Applied Mathematics and Optimization, 2021, 84 : 55 - 98
  • [28] Stochastic differential equations driven by fractional Brownian motion
    Xu, Liping
    Luo, Jiaowan
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 142 : 102 - 108
  • [29] Filtering for linear systems driven by fractional Brownian motion
    Ahmed, NU
    Charalambous, CD
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4259 - 4263
  • [30] Functional differential equations driven by a fractional Brownian motion
    Boufoussi, B.
    Hajji, S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (02) : 746 - 754