Semi-Parametric Models - An Application in Medicine

被引:0
|
作者
Pereira, J. A. [1 ]
Pereira, A. L. [2 ]
Oliveira, T. A. [3 ,4 ]
机构
[1] Univ Porto, Dent Med Sch, Dept Periodontol, Porto, Portugal
[2] Open Univ, MMMB, Porto, Portugal
[3] Ctr Stat & Applicat CEAUL, Lisbon, Portugal
[4] Open Univ, Porto, Portugal
来源
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 | 2020年 / 2293卷
关键词
D O I
10.1063/5.0028556
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modeling of medical data often requires the inclusion of non-linear forms of the predictors and, the Generalized Additive Models (GAMs) can provide an excellent fit in the presence of non-linear relationships and significant noise in the predictor variables. The accurate assessment of QT interval is of paramount importance since its prolongation (LQTS) is a life threatening condition. The QT interval is affected by heart rate and gender and may be adjusted to improve the detection of patients at increased risk. Bazett's formula is the most commonly used QT correction formula, and takes into account only the heart rate assessed by the RR interval, and cut-of values of corrected QT are defined according to gender. In this work we analyzed relevance of QRS, together with gender and RR to explain QT length using GAMs. Results showed that QRS and gender are significant to non-pathological QT modelling.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Generalized linear models in software reliability: parametric & semi-parametric approaches
    IMAG - Lab de Modelisation et Calcul, Grenoble, Germany
    IEEE Trans Reliab, 3 (463-470):
  • [32] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [33] Ensemble of Semi-Parametric Models for IoT Fog Modeling
    Jan, Ibny
    Iranmanesh, Saeid
    Sajeev, A. S. M.
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2995 - 2998
  • [34] A semi-parametric estimator for censored selection models with endogeneity
    Lee, MJ
    Vella, F
    JOURNAL OF ECONOMETRICS, 2006, 130 (02) : 235 - 252
  • [35] Measurement errors in semi-parametric generalised regression models
    Hattab, Mohammad W.
    Ruppert, David
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (04) : 344 - 363
  • [36] Minimum-entropy estimation in semi-parametric models
    Wolsztynski, E
    Thierry, E
    Pronzato, L
    SIGNAL PROCESSING, 2005, 85 (05) : 937 - 949
  • [37] SEMI-PARAMETRIC INFERENCE FOR COPULA MODELS FOR TRUNCATED DATA
    Emura, Takeshi
    Wang, Weijing
    Hung, Hui-Nien
    STATISTICA SINICA, 2011, 21 (01) : 349 - 367
  • [38] Generalized linear models in software reliability: Parametric & semi-parametric approaches
    ElAroui, MA
    Lavergne, C
    IEEE TRANSACTIONS ON RELIABILITY, 1996, 45 (03) : 463 - 470
  • [39] A comparison of parametric and semi-parametric survival models with artificial neural networks
    Mokarram, Reza
    Emadi, Mahdi
    Rad, Arezou Habibi
    Nooghabi, Mahdi Jabbari
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) : 738 - 746
  • [40] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249