Semi-Parametric Models - An Application in Medicine

被引:0
|
作者
Pereira, J. A. [1 ]
Pereira, A. L. [2 ]
Oliveira, T. A. [3 ,4 ]
机构
[1] Univ Porto, Dent Med Sch, Dept Periodontol, Porto, Portugal
[2] Open Univ, MMMB, Porto, Portugal
[3] Ctr Stat & Applicat CEAUL, Lisbon, Portugal
[4] Open Univ, Porto, Portugal
来源
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019 | 2020年 / 2293卷
关键词
D O I
10.1063/5.0028556
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modeling of medical data often requires the inclusion of non-linear forms of the predictors and, the Generalized Additive Models (GAMs) can provide an excellent fit in the presence of non-linear relationships and significant noise in the predictor variables. The accurate assessment of QT interval is of paramount importance since its prolongation (LQTS) is a life threatening condition. The QT interval is affected by heart rate and gender and may be adjusted to improve the detection of patients at increased risk. Bazett's formula is the most commonly used QT correction formula, and takes into account only the heart rate assessed by the RR interval, and cut-of values of corrected QT are defined according to gender. In this work we analyzed relevance of QRS, together with gender and RR to explain QT length using GAMs. Results showed that QRS and gender are significant to non-pathological QT modelling.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Unified variable selection in semi-parametric models
    Terry, William
    Zhang, Hongmei
    Maity, Arnab
    Arshad, Hasan
    Karmaus, Wilfried
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (06) : 2821 - 2831
  • [23] Semi-parametric models of spatial market integration
    Barry K. Goodwin
    Matthew T. Holt
    Jeffrey P. Prestemon
    Empirical Economics, 2021, 61 : 2335 - 2361
  • [24] Specification testing in semi-parametric transformation models
    Nick Kloodt
    Natalie Neumeyer
    Ingrid Van Keilegom
    TEST, 2021, 30 : 980 - 1003
  • [25] KSPM: A Package For Kernel Semi-Parametric Models
    Schramm, Catherine
    Jacquemont, Sebastien
    Oualkacha, Karim
    Labbe, Aurelie
    Greenwood, Celia M. T.
    R JOURNAL, 2020, 12 (02): : 82 - 106
  • [26] Semi-parametric Bayesian models for heterogeneous degradation data: An application to laser data
    Santos, Cristiano C.
    Loschi, Rosangela H.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 202
  • [27] A Semi-parametric Density Estimation with Application in Clustering
    Mahdi Salehi
    Andriette Bekker
    Mohammad Arashi
    Journal of Classification, 2023, 40 : 52 - 78
  • [28] A Semi-parametric Density Estimation with Application in Clustering
    Salehi, Mahdi
    Bekker, Andriette
    Arashi, Mohammad
    JOURNAL OF CLASSIFICATION, 2023, 40 (01) : 52 - 78
  • [29] A METHOD FOR COMPARING SEMI-PARAMETRIC MODELS WITH PARAMETRIC MODELS IN COMPETING RISKS ANALYSIS
    WAN, J
    COMPUTERS AND BIOMEDICAL RESEARCH, 1989, 22 (06): : 565 - 574
  • [30] Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models
    Wey, Andrew
    Connett, John
    Rudser, Kyle
    BIOSTATISTICS, 2015, 16 (03) : 537 - 549