Semiparametric Bayesian inference for multilevel repeated measurement data

被引:11
|
作者
Muller, Peter [1 ]
Quintana, Fernando A.
Rosner, Gary L.
机构
[1] Univ Texas, Dept Biostat & Appl Math, MD Anderson Canc Ctr, Houston, TX 77030 USA
[2] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
关键词
Bayesian nonparametrics; Dirichlet process; hierarchical model; repeated measurement data;
D O I
10.1111/j.1541-0420.2006.00668.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss inference for data with repeated measurements at multiple levels. The motivating example is data with blood counts from cancer patients undergoing multiple cycles of chemotherapy, with days nested within cycles. Some inference questions relate to repeated measurements over days within cycle, while other questions are concerned with the dependence across cycles. When the desired inference relates to both levels of repetition, it becomes important to reflect the data structure in the model. We develop a semiparametric Bayesian modeling approach, restricting attention to two levels of repeated measurements. For the top-level longitudinal sampling model we use random effects to introduce the desired dependence across repeated measurements. We use a nonparametric prior for the random effects distribution. Inference about dependence across second-level repetition is implemented by the clustering implied in the nonparametric random effects model. Practical use of the model requires that the posterior distribution on the latent random effects be reasonably precise.
引用
收藏
页码:280 / 289
页数:10
相关论文
共 50 条
  • [1] Semiparametric Bayesian inference for repeated fractional measurement data
    Yang, Ying
    Muller, Peter
    Rosner, Gary L.
    [J]. CHILEAN JOURNAL OF STATISTICS, 2010, 1 (01): : 59 - 74
  • [2] Semiparametric Bayesian Inference for Phage Display Data
    Leon-Novelo, Luis G.
    Mueller, Peter
    Arap, Wadih
    Kolonin, Mikhail
    Sun, Jessica
    Pasqualini, Renata
    Do, Kim-Anh
    [J]. BIOMETRICS, 2013, 69 (01) : 174 - 183
  • [3] Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data
    Li, Yisheng
    Lin, Xihong
    Mueller, Peter
    [J]. BIOMETRICS, 2010, 66 (01) : 70 - 78
  • [4] Semiparametric Bayesian inference in autoregressive panel data models
    Hirano, K
    [J]. ECONOMETRICA, 2002, 70 (02) : 781 - 799
  • [5] Semiparametric Bayesian inference on generalized linear measurement error models
    Tang, Nian-Sheng
    Li, De-Wang
    Tang, An-Min
    [J]. STATISTICAL PAPERS, 2017, 58 (04) : 1091 - 1113
  • [6] Semiparametric Bayesian inference on generalized linear measurement error models
    Nian-Sheng Tang
    De-Wang Li
    An-Min Tang
    [J]. Statistical Papers, 2017, 58 : 1091 - 1113
  • [7] SEMIPARAMETRIC BAYESIAN CAUSAL INFERENCE
    Ray, Kolyan
    van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2999 - 3020
  • [8] Biclustering via Semiparametric Bayesian Inference
    Murua, Alejandro
    Quintana, Fernando Andres
    [J]. BAYESIAN ANALYSIS, 2022, 17 (03): : 969 - 995
  • [9] Bayesian inference for semiparametric binary regression
    Newton, MA
    Czado, C
    Chappell, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 142 - 153
  • [10] Nonasymptotic approach to Bayesian semiparametric inference
    M. E. Panov
    [J]. Doklady Mathematics, 2016, 93 : 155 - 158