Nonasymptotic approach to Bayesian semiparametric inference

被引:0
|
作者
M. E. Panov
机构
[1] Russian Academy of Sciences,Institute for Information Transmission Problems
[2] Moscow Institute of Physics and Technology,undefined
[3] Datadvance Company,undefined
来源
Doklady Mathematics | 2016年 / 93卷
关键词
Nuisance Parameter; Fisher Information Matrix; Target Parameter; Gaussian Process Regression; Full Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
The classical semiparametric Bernstein–von Mises (BvM) results is reconsidered in a non-classical setup allowing finite samples and model misspecication. We obtain an upper bound on the error of Gaussian approximation of the posterior distribution for the target parameter which is explicit in the dimension of the target parameter and in the dimension of sieve approximation of the nuisance parameter. This helps to identify the so called critical dimension pn of the sieve approximation of the full parameter for which the BvM result is applicable. If the bias induced by sieve approximation is small and dimension of sieve approximation is smaller then critical dimension than the BvM result is valid. In the important i.i.d. and regression cases, we show that the condition “pn2q/n is small”, where q is the dimension of the target parameter and n is the sample size, leads to the BvM result under general assumptions on the model.
引用
收藏
页码:155 / 158
页数:3
相关论文
共 50 条
  • [1] Nonasymptotic approach to Bayesian semiparametric inference
    Panov, M. E.
    [J]. DOKLADY MATHEMATICS, 2016, 93 (02) : 155 - 158
  • [2] A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference
    Schwartz, Scott L.
    Li, Fan
    Mealli, Fabrizia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1331 - 1344
  • [3] SEMIPARAMETRIC BAYESIAN CAUSAL INFERENCE
    Ray, Kolyan
    van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2999 - 3020
  • [4] Biclustering via Semiparametric Bayesian Inference
    Murua, Alejandro
    Quintana, Fernando Andres
    [J]. BAYESIAN ANALYSIS, 2022, 17 (03): : 969 - 995
  • [5] Bayesian inference for semiparametric binary regression
    Newton, MA
    Czado, C
    Chappell, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 142 - 153
  • [6] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [7] Semiparametric Bayesian Inference for Phage Display Data
    Leon-Novelo, Luis G.
    Mueller, Peter
    Arap, Wadih
    Kolonin, Mikhail
    Sun, Jessica
    Pasqualini, Renata
    Do, Kim-Anh
    [J]. BIOMETRICS, 2013, 69 (01) : 174 - 183
  • [8] Semiparametric Bayesian inference for stochastic frontier models
    Griffin, JE
    Steel, MFJ
    [J]. JOURNAL OF ECONOMETRICS, 2004, 123 (01) : 121 - 152
  • [9] ON SEMIPARAMETRIC PIVOTAL BAYESIAN-INFERENCE FOR QUANTILES
    SWARTZ, TB
    VILLEGAS, C
    MARTINEZ, CJ
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (10) : 2499 - 2515
  • [10] Semiparametric Bayesian inference in smooth coefficient models
    Koop, Gary
    Tobias, Justin L.
    [J]. JOURNAL OF ECONOMETRICS, 2006, 134 (01) : 283 - 315