Semiparametric Bayesian Inference for Phage Display Data

被引:3
|
作者
Leon-Novelo, Luis G. [1 ]
Mueller, Peter [2 ]
Arap, Wadih [3 ,4 ]
Kolonin, Mikhail [5 ]
Sun, Jessica [3 ,4 ]
Pasqualini, Renata [6 ]
Do, Kim-Anh [7 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Genitourinary Med Oncol, Houston, TX 77230 USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Canc Biol, Houston, TX 77230 USA
[5] Univ Texas Hlth & Sci Ctr Houston, Brown Fdn Inst Mol Med Prevent Human Dis, Houston, TX 77030 USA
[6] Univ Texas MD Anderson Canc Ctr, Div Canc Med, Dept Genitourinary Med Oncol Res, Houston, TX 77030 USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
关键词
Biopanning; Decision problem; Dirichlet process mixture; Multiple comparison; Phage display experiment; NONPARAMETRIC PROBLEMS; DISCOVERY PROCEDURE; COUNT DATA; MIXTURE; MODELS; SELECTION; CANCER;
D O I
10.1111/j.1541-0420.2012.01817.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss inference for a human phage display experiment with three stages. The data are tripeptide counts by tissue and stage. The primary aim of the experiment is to identify ligands that bind with high affinity to a given tissue. We formalize the research question as inference about the monotonicity of mean counts over stages. The inference goal is then to identify a list of peptidetissue pairs with significant increase over stages. We use a semiparametric Dirichlet process mixture of Poisson model. The posterior distribution under this model allows the desired inference about the monotonicity of mean counts. However, the desired inference summary as a list of peptidetissue pairs with significant increase involves a massive multiplicity problem. We consider two alternative approaches to address this multiplicity issue. First we propose an approach based on the control of the posterior expected false discovery rate. We notice that the implied solution ignores the relative size of the increase. This motivates a second approach based on a utility function that includes explicit weights for the size of the increase.
引用
收藏
页码:174 / 183
页数:10
相关论文
共 50 条
  • [1] Semiparametric Bayesian inference for multilevel repeated measurement data
    Muller, Peter
    Quintana, Fernando A.
    Rosner, Gary L.
    [J]. BIOMETRICS, 2007, 63 (01) : 280 - 289
  • [2] Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data
    Li, Yisheng
    Lin, Xihong
    Mueller, Peter
    [J]. BIOMETRICS, 2010, 66 (01) : 70 - 78
  • [3] Semiparametric Bayesian inference in autoregressive panel data models
    Hirano, K
    [J]. ECONOMETRICA, 2002, 70 (02) : 781 - 799
  • [4] Semiparametric Bayesian inference for repeated fractional measurement data
    Yang, Ying
    Muller, Peter
    Rosner, Gary L.
    [J]. CHILEAN JOURNAL OF STATISTICS, 2010, 1 (01): : 59 - 74
  • [5] SEMIPARAMETRIC BAYESIAN CAUSAL INFERENCE
    Ray, Kolyan
    van der Vaart, Aad
    [J]. ANNALS OF STATISTICS, 2020, 48 (05): : 2999 - 3020
  • [6] Biclustering via Semiparametric Bayesian Inference
    Murua, Alejandro
    Quintana, Fernando Andres
    [J]. BAYESIAN ANALYSIS, 2022, 17 (03): : 969 - 995
  • [7] Bayesian inference for semiparametric binary regression
    Newton, MA
    Czado, C
    Chappell, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 142 - 153
  • [8] Nonasymptotic approach to Bayesian semiparametric inference
    M. E. Panov
    [J]. Doklady Mathematics, 2016, 93 : 155 - 158
  • [9] Semiparametric Bayesian inference for regression models
    Seifu, Y
    Severini, TA
    Tanner, MA
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 719 - 734
  • [10] BAYESIAN SEMIPARAMETRIC INFERENCE FOR MULTIVARIATE DOUBLY-INTERVAL-CENSORED DATA
    Jara, Alejandro
    Lesaffre, Emmanuel
    De Iorio, Maria
    Quintana, Fernando
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (04): : 2126 - 2149