Semiparametric Bayesian inference for multilevel repeated measurement data

被引:11
|
作者
Muller, Peter [1 ]
Quintana, Fernando A.
Rosner, Gary L.
机构
[1] Univ Texas, Dept Biostat & Appl Math, MD Anderson Canc Ctr, Houston, TX 77030 USA
[2] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
关键词
Bayesian nonparametrics; Dirichlet process; hierarchical model; repeated measurement data;
D O I
10.1111/j.1541-0420.2006.00668.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss inference for data with repeated measurements at multiple levels. The motivating example is data with blood counts from cancer patients undergoing multiple cycles of chemotherapy, with days nested within cycles. Some inference questions relate to repeated measurements over days within cycle, while other questions are concerned with the dependence across cycles. When the desired inference relates to both levels of repetition, it becomes important to reflect the data structure in the model. We develop a semiparametric Bayesian modeling approach, restricting attention to two levels of repeated measurements. For the top-level longitudinal sampling model we use random effects to introduce the desired dependence across repeated measurements. We use a nonparametric prior for the random effects distribution. Inference about dependence across second-level repetition is implemented by the clustering implied in the nonparametric random effects model. Practical use of the model requires that the posterior distribution on the latent random effects be reasonably precise.
引用
收藏
页码:280 / 289
页数:10
相关论文
共 50 条
  • [21] Semiparametric Bayesian Analysis of Nutritional Epidemiology Data in the Presence of Measurement Error
    Sinha, Samiran
    Mallick, Bani K.
    Kipnis, Victor
    Carroll, Raymond J.
    [J]. BIOMETRICS, 2010, 66 (02) : 444 - 454
  • [22] Bayesian inference in measurement error models for replicated data
    de Castro, Mario
    Bolfarine, Heleno
    Galea, M.
    [J]. ENVIRONMETRICS, 2013, 24 (01) : 22 - 30
  • [23] Semiparametric Bayesian measurement error modeling
    Casanova, Maria P.
    Iglesias, Pilar
    Bolfarine, Heleno
    Salinas, Victor H.
    Pena, Alexis
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (03) : 512 - 524
  • [24] A Bayesian Semiparametric Approach to Intermediate Variables in Causal Inference
    Schwartz, Scott L.
    Li, Fan
    Mealli, Fabrizia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1331 - 1344
  • [25] Bayesian inference for semiparametric regression using a Fourier representation
    Lenk, PJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 863 - 879
  • [26] Consistent semiparametric Bayesian inference about a location parameter
    Ghosal, S
    Ghosh, JK
    Ramamoorthi, RV
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 77 (02) : 181 - 193
  • [27] A semiparametric Bayesian model for repeatedly repeated binary outcomes
    Quintana, Fernando A.
    Mueller, Peter
    Rosner, Gary L.
    Relling, Mary V.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 419 - 431
  • [28] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Athanasios Kottas
    Gilbert W. Fellingham
    [J]. Statistics and Computing, 2012, 22 : 93 - 106
  • [29] Bayesian semiparametric modeling and inference with mixtures of symmetric distributions
    Kottas, Athanasios
    Fellingham, Gilbert W.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (01) : 93 - 106
  • [30] Bayesian semiparametric inference on long-range dependence
    Liseo, B
    Marinucci, D
    Petrella, L
    [J]. BIOMETRIKA, 2001, 88 (04) : 1089 - 1104