Regression on High-dimensional Inputs

被引:0
|
作者
Kuleshov, Alexander [1 ]
Bernstein, Alexander [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol Skoltech, Moscow, Russia
[2] IITP RAS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
high-dimensional manifold-valued inputs; regression on manifolds; dimensionality reduction; regression on feature space; manifold learning; MANIFOLDS;
D O I
10.1109/ICDMW.2016.15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider unknown smooth function which maps high-dimensional inputs, whose values lie on unknown Input manifold of lower dimensionality embedded in an ambient high-dimensional space, to multi-dimensional outputs. Given training dataset consisting of 'input-output' pairs, Regression on input manifold problem is to estimate the unknown function and its Jacobian matrix, as well to estimate the Input manifold. Transforming the high-dimensional inputs to their lowdimensional features, the problem is reduced to certain regression on feature space problem. The paper presents a new geometrically motivated method for solution of both interrelated regression problems.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 50 条
  • [21] Unconditional quantile regression with high-dimensional data
    Sasaki, Yuya
    Ura, Takuya
    Zhang, Yichong
    [J]. QUANTITATIVE ECONOMICS, 2022, 13 (03) : 955 - 978
  • [22] High-Dimensional Classification by Sparse Logistic Regression
    Abramovich, Felix
    Grinshtein, Vadim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 3068 - 3079
  • [23] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [24] Variational Inference in high-dimensional linear regression
    Mukherjee, Sumit
    Sen, Subhabrata
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [25] GENERALIZED REGRESSION ESTIMATORS WITH HIGH-DIMENSIONAL COVARIATES
    Ta, Tram
    Shao, Jun
    Li, Quefeng
    Wang, Lei
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1135 - 1154
  • [26] ACCURACY ASSESSMENT FOR HIGH-DIMENSIONAL LINEAR REGRESSION
    Cai, T. Tony
    Guo, Zijian
    [J]. ANNALS OF STATISTICS, 2018, 46 (04): : 1807 - 1836
  • [27] p-Values for High-Dimensional Regression
    Meinshausen, Nicolai
    Meier, Lukas
    Buehlmann, Peter
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1671 - 1681
  • [28] Interpolating Predictors in High-Dimensional Factor Regression
    Bunea, Florentina
    Strimas-Mackey, Seth
    Wegkamp, Marten
    [J]. Journal of Machine Learning Research, 2022, 23
  • [29] High-dimensional regression adjustments in randomized experiments
    Wager, Stefan
    Du, Wenfei
    Taylor, Jonathan
    Tibshirani, Robert J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (45) : 12673 - 12678
  • [30] Localizing Changes in High-Dimensional Regression Models
    Rinaldo, Alessandro
    Wang, Daren
    Wen, Qin
    Willett, Rebecca
    Yu, Yi
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130