Regression on High-dimensional Inputs

被引:0
|
作者
Kuleshov, Alexander [1 ]
Bernstein, Alexander [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol Skoltech, Moscow, Russia
[2] IITP RAS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
high-dimensional manifold-valued inputs; regression on manifolds; dimensionality reduction; regression on feature space; manifold learning; MANIFOLDS;
D O I
10.1109/ICDMW.2016.15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider unknown smooth function which maps high-dimensional inputs, whose values lie on unknown Input manifold of lower dimensionality embedded in an ambient high-dimensional space, to multi-dimensional outputs. Given training dataset consisting of 'input-output' pairs, Regression on input manifold problem is to estimate the unknown function and its Jacobian matrix, as well to estimate the Input manifold. Transforming the high-dimensional inputs to their lowdimensional features, the problem is reduced to certain regression on feature space problem. The paper presents a new geometrically motivated method for solution of both interrelated regression problems.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 50 条
  • [31] High-Dimensional Sparse Additive Hazards Regression
    Lin, Wei
    Lv, Jinchi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (501) : 247 - 264
  • [32] Inference for high-dimensional instrumental variables regression
    Gold, David
    Lederer, Johannes
    Tao, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2020, 217 (01) : 79 - 111
  • [33] Localizing Changes in High-Dimensional Regression Models
    Rinaldo, Alessandro
    Wang, Daren
    Wen, Qin
    Willett, Rebecca
    Yu, Yi
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [34] Prediction in abundant high-dimensional linear regression
    Cook, R. Dennis
    Forzani, Liliana
    Rothman, Adam J.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 3059 - 3088
  • [35] Interpolating Predictors in High-Dimensional Factor Regression
    Bunea, Florentina
    Strimas-Mackey, Seth
    Wegkamp, Marten
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [36] Elementary Estimators for High-Dimensional Linear Regression
    Yang, Eunho
    Lozano, Aurelie C.
    Ravikumar, Pradeep
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 388 - 396
  • [37] SEMIPARAMETRIC QUANTILE REGRESSION WITH HIGH-DIMENSIONAL COVARIATES
    Zhu, Liping
    Huang, Mian
    Li, Runze
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1379 - 1401
  • [38] Markov Neighborhood Regression for High-Dimensional Inference
    Liang, Faming
    Xue, Jingnan
    Jia, Bochao
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1200 - 1214
  • [39] Optimal subsampling for high-dimensional ridge regression
    Li, Hanyu
    Niu, Chengmei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 286
  • [40] High-dimensional model averaging for quantile regression
    Xie, Jinhan
    Ding, Xianwen
    Jiang, Bei
    Yan, Xiaodong
    Kong, Linglong
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 618 - 635