Regression on High-dimensional Inputs

被引:0
|
作者
Kuleshov, Alexander [1 ]
Bernstein, Alexander [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol Skoltech, Moscow, Russia
[2] IITP RAS, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
high-dimensional manifold-valued inputs; regression on manifolds; dimensionality reduction; regression on feature space; manifold learning; MANIFOLDS;
D O I
10.1109/ICDMW.2016.15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consider unknown smooth function which maps high-dimensional inputs, whose values lie on unknown Input manifold of lower dimensionality embedded in an ambient high-dimensional space, to multi-dimensional outputs. Given training dataset consisting of 'input-output' pairs, Regression on input manifold problem is to estimate the unknown function and its Jacobian matrix, as well to estimate the Input manifold. Transforming the high-dimensional inputs to their lowdimensional features, the problem is reduced to certain regression on feature space problem. The paper presents a new geometrically motivated method for solution of both interrelated regression problems.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 50 条
  • [41] On sliced inverse regression with high-dimensional covariates
    Zhu, LX
    Miao, BQ
    Peng, H
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 630 - 643
  • [42] High-dimensional regression analysis with treatment comparisons
    Lue, Heng-Hui
    You, Bing-Ran
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1299 - 1317
  • [43] The Impact of Regularization on High-dimensional Logistic Regression
    Salehi, Fariborz
    Abbasi, Ehsan
    Hassibi, Babak
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [44] High-dimensional regression analysis with treatment comparisons
    Heng-Hui Lue
    Bing-Ran You
    [J]. Computational Statistics, 2013, 28 : 1299 - 1317
  • [45] Subgroup analysis for high-dimensional functional regression
    Zhang, Xiaochen
    Zhang, Qingzhao
    Ma, Shuangge
    Fang, Kuangnan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [46] HIGH-DIMENSIONAL FACTOR REGRESSION FOR HETEROGENEOUS SUBPOPULATIONS
    Wang, Peiyao
    Li, Quefeng
    Shen, Dinggan
    Liu, Yufeng
    [J]. STATISTICA SINICA, 2023, 33 (01) : 27 - 53
  • [47] A Note on High-Dimensional Linear Regression With Interactions
    Hao, Ning
    Zhang, Hao Helen
    [J]. AMERICAN STATISTICIAN, 2017, 71 (04): : 291 - 297
  • [48] Robust Ridge Regression for High-Dimensional Data
    Maronna, Ricardo A.
    [J]. TECHNOMETRICS, 2011, 53 (01) : 44 - 53
  • [49] High-dimensional predictive regression in the presence of cointegration
    Koo, Bonsoo
    Anderson, Heather M.
    Seo, Myung Hwan
    Yao, Wenying
    [J]. JOURNAL OF ECONOMETRICS, 2020, 219 (02) : 456 - 477
  • [50] STOCHASTIC GAUSSIAN PROCESS MODEL AVERAGING FOR HIGH-DIMENSIONAL INPUTS
    Xuereb, Maxime
    Ng, Szu Hui
    Pedrielli, Giulia
    [J]. 2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 373 - 384