Variational Inference in high-dimensional linear regression

被引:0
|
作者
Mukherjee, Sumit [1 ]
Sen, Subhabrata [2 ]
机构
[1] Columbia Univ, Dept Stat, New York, NY 10027 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
关键词
Variational Inference; Linear regression; Naive Mean -Field Approximation; BAYESIAN VARIABLE SELECTION; SPARSE GRAPH CONVERGENCE; L-P THEORY; MEAN-FIELD; ASYMPTOTIC NORMALITY; APPROXIMATION; INEQUALITIES; CONSISTENCY; COMPLEXITY; SEQUENCES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study high-dimensional bayesian linear regression with product priors. Using the nascent theory of non-linear large deviations (Chatterjee and Dembo, 2016), we derive sufficient conditions for the leading-order correctness of the naive mean-field approximation to the log-normalizing constant of the posterior distribution. Subsequently, assuming a true linear model for the observed data, we derive a limiting infinite dimensional variational formula for the log normalizing constant for the posterior. Furthermore, we establish that under an additional "separation" condition, the variational problem has a unique optimizer, and this optimizer governs the probabilistic properties of the posterior distribution. We provide intuitive sufficient conditions for the validity of this "separation" condition. Finally, we illustrate our results on concrete examples with specific design matrices.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] Variational Bayesian Inference in High-Dimensional Linear Mixed Models
    Yi, Jieyi
    Tang, Niansheng
    [J]. MATHEMATICS, 2022, 10 (03)
  • [2] On inference in high-dimensional regression
    Battey, Heather S.
    Reid, Nancy
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (01) : 149 - 175
  • [3] Variational Bayes for High-Dimensional Linear Regression With Sparse Priors
    Ray, Kolyan
    Szabo, Botond
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1270 - 1281
  • [4] Introduction to variational Bayes for high-dimensional linear and logistic regression models
    Jang, Insong
    Lee, Kyoungjae
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (03) : 445 - 455
  • [5] Bayesian inference for high-dimensional linear regression under mnet priors
    Tan, Aixin
    Huang, Jian
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (02): : 180 - 197
  • [6] Implicit Variational Inference for High-Dimensional Posteriors
    Uppal, Anshuk
    Stensbo-Smidt, Kristoffer
    Boomsma, Wouter
    Frellsen, Jes
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [7] Challenges and Opportunities in High-dimensional Variational Inference
    Dhaka, Akash Kumar
    Catalina, Alejandro
    Welandawe, Manushi
    Andersen, Michael Riis
    Huggins, Jonathan H.
    Vehtari, Aki
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [8] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [9] Inference for high-dimensional instrumental variables regression
    Gold, David
    Lederer, Johannes
    Tao, Jing
    [J]. JOURNAL OF ECONOMETRICS, 2020, 217 (01) : 79 - 111
  • [10] Markov Neighborhood Regression for High-Dimensional Inference
    Liang, Faming
    Xue, Jingnan
    Jia, Bochao
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1200 - 1214