Graph subspaces and the spectral shift function

被引:32
|
作者
Albeverio, S
Makarov, KA
Motovilov, AK
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
D O I
10.4153/CJM-2003-020-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a new representation for the solution to the operator Sylvester equation in the form of a Stieltjes operator integral. We also formulate new sufficient conditions for the strong solvability of the operator Riccati equation that ensures the existence of reducing graph subspaces; for block operator matrices. Next, we extend the concept of the Lifshits-Krein spectral shift function associated with a pair of self-adjoint operators to the case of pairs of admissible operators that are similar to self-adjoint operators. Based on this new concept we express the spectral shift function arising in a perturbation problem for block operator matrices in terms of the angular operators associated with the corresponding perturbed and unperturbed eigenspaccs.
引用
收藏
页码:449 / 503
页数:55
相关论文
共 50 条
  • [21] On Invariant Graph Subspaces
    Konstantin A. Makarov
    Stephan Schmitz
    Albrecht Seelmann
    Integral Equations and Operator Theory, 2016, 85 : 399 - 425
  • [22] On Invariant Graph Subspaces
    Makarov, Konstantin A.
    Schmitz, Stephan
    Seelmann, Albrecht
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 85 (03) : 399 - 425
  • [23] Representation of the spectral shift function and spectral asymptotics for trapping perturbations
    Bruneau, V
    Petkov, V
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) : 2081 - 2119
  • [24] CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION
    GEISLER, R
    KOSTRYKIN, V
    SCHRADER, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (02) : 161 - 181
  • [25] On the Weak and Ergodic Limit of the Spectral Shift Function
    Vita Borovyk
    Konstantin A. Makarov
    Letters in Mathematical Physics, 2012, 100 : 1 - 15
  • [26] Bounds on the spectral shift function and the density of states
    Hundertmark, D
    Killip, R
    Nakamura, S
    Stollmann, P
    Veselic, I
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (02) : 489 - 503
  • [27] Spectral Shift Function and Eigenvalues of the Perturbed Operator
    Aliev A.R.
    Eyvazov E.H.
    Journal of Mathematical Sciences, 2024, 282 (4) : 464 - 472
  • [28] Koplienko Spectral Shift Function on the Unit Circle
    Denis Potapov
    Fedor Sukochev
    Communications in Mathematical Physics, 2012, 309 : 693 - 702
  • [29] On the Weak and Ergodic Limit of the Spectral Shift Function
    Borovyk, Vita
    Makarov, Konstantin A.
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (01) : 1 - 15
  • [30] Concavity of eigenvalue sums and the spectral shift function
    Kostrykin, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (01) : 100 - 114