Concavity of eigenvalue sums and the spectral shift function

被引:6
|
作者
Kostrykin, V [1 ]
机构
[1] Fraunhofer Inst Lasertech, D-52074 Aachen, Germany
关键词
eigenvalue problems; spectral shift function; perturbation theory;
D O I
10.1006/jfan.2000.3620
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that the sum of negative (positive) eigenvalues of some finite Hermitian matrix V is concave (convex) with respect to V. Using the theory of the spectral shift function we generalize this property to self-adjoint operators on a separable Hilbert space with an arbitrary spectrum. More precisely, we prove that the spectral shift function integrated with respect to the spectral parameter from - infinity to lambda (from lambda to + infinity) is concave (convex) with respect to trace class perturbations. The case of relative trace class perturbations is also considered. (C) 2000 Academic Press.
引用
收藏
页码:100 / 114
页数:15
相关论文
共 50 条
  • [1] CONVEXITY AND CONCAVITY OF EIGENVALUE SUMS
    LIEB, EH
    SIEDENTOP, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) : 811 - 816
  • [2] CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION
    GEISLER, R
    KOSTRYKIN, V
    SCHRADER, R
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (02) : 161 - 181
  • [3] The Spectral Shift Function and Spectral Flow
    N. A. Azamov
    A. L. Carey
    F. A. Sukochev
    [J]. Communications in Mathematical Physics, 2007, 276 : 51 - 91
  • [4] The spectral shift function and spectral flow
    Azamov, N. A.
    Carey, A. L.
    Sukochev, F. A.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (01) : 51 - 91
  • [5] THE ASYMPTOTICS OF A SPECTRAL SHIFT FUNCTION
    IVRII, VJ
    SHUBIN, MA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 263 (02): : 283 - 284
  • [6] Subadditivity of eigenvalue sums
    Uchiyama, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) : 1405 - 1412
  • [7] Generalized inverse eigenvalue problem and spectral function
    Ghanbari, K
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2004, 11 (5-6): : 809 - 816
  • [8] On partial sums of a spectral analogue of the Mobius function
    Chakraborty, Kalyan
    Minamide, Makoto
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (02): : 193 - 201
  • [9] Lower bounds on the eigenvalue sums of the Schrödinger operator and the spectral conservation law
    Safronov O.
    [J]. Journal of Mathematical Sciences, 2010, 166 (3) : 69 - 84
  • [10] Jump at zero of the spectral shift function
    Carron, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 212 (01) : 222 - 260