CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION

被引:13
|
作者
GEISLER, R [1 ]
KOSTRYKIN, V [1 ]
SCHRADER, R [1 ]
机构
[1] ST PETERSBURG STATE UNIV,DEPT MATH & COMPUTAT PHYS,ST PETERSBURG 198904,RUSSIA
关键词
D O I
10.1142/S0129055X95000098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the integrated Krein's spectral shift function for one particle Schrodinger operators in R(3) is concave with respect to the perturbation potential. The proof is given by showing that the spectral shift function is the limit in the distributional sense of the difference of the counting functions for the given Hamiltonian and the free Hamiltonian in a finite domain Lambda with Dirichlet boundary conditions when Lambda --> infinity.
引用
收藏
页码:161 / 181
页数:21
相关论文
共 50 条
  • [1] Concavity of eigenvalue sums and the spectral shift function
    Kostrykin, V
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 176 (01) : 100 - 114
  • [2] The Spectral Shift Function and Spectral Flow
    N. A. Azamov
    A. L. Carey
    F. A. Sukochev
    [J]. Communications in Mathematical Physics, 2007, 276 : 51 - 91
  • [3] The spectral shift function and spectral flow
    Azamov, N. A.
    Carey, A. L.
    Sukochev, F. A.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (01) : 51 - 91
  • [4] THE ASYMPTOTICS OF A SPECTRAL SHIFT FUNCTION
    IVRII, VJ
    SHUBIN, MA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 263 (02): : 283 - 284
  • [5] ON SPECTRAL PROPERTIES OF OPERATORS WITH SHIFT
    BRENNER, VV
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (01) : 159 - 160
  • [6] ON SPECTRAL PROPERTIES OF OPERATORS WITH A SHIFT
    ANTONEVICH, AB
    LEBEDEV, AV
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1983, 47 (05): : 201 - 224
  • [7] Jump at zero of the spectral shift function
    Carron, G
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 212 (01) : 222 - 260
  • [8] EFFICIENT BOUNDS FOR THE SPECTRAL SHIFT FUNCTION
    SOBOLEV, AV
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1993, 58 (01): : 55 - 83
  • [9] Meromorphic continuation of the spectral shift function
    Bruneau, V
    Petkov, V
    [J]. DUKE MATHEMATICAL JOURNAL, 2003, 116 (03) : 389 - 430
  • [10] Spectral shift function of higher order
    Denis Potapov
    Anna Skripka
    Fedor Sukochev
    [J]. Inventiones mathematicae, 2013, 193 : 501 - 538