CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION

被引:13
|
作者
GEISLER, R [1 ]
KOSTRYKIN, V [1 ]
SCHRADER, R [1 ]
机构
[1] ST PETERSBURG STATE UNIV,DEPT MATH & COMPUTAT PHYS,ST PETERSBURG 198904,RUSSIA
关键词
D O I
10.1142/S0129055X95000098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the integrated Krein's spectral shift function for one particle Schrodinger operators in R(3) is concave with respect to the perturbation potential. The proof is given by showing that the spectral shift function is the limit in the distributional sense of the difference of the counting functions for the given Hamiltonian and the free Hamiltonian in a finite domain Lambda with Dirichlet boundary conditions when Lambda --> infinity.
引用
收藏
页码:161 / 181
页数:21
相关论文
共 50 条
  • [31] On the Weak and Ergodic Limit of the Spectral Shift Function
    Borovyk, Vita
    Makarov, Konstantin A.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (01) : 1 - 15
  • [32] The spectral function of shift-invariant spaces
    Bownik, M
    Rzeszotnik, Z
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (02) : 387 - 414
  • [33] Estimates for the spectral shift function of the polyharmonic operator
    Pushnitski, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (11) : 5578 - 5592
  • [34] The Spectral Shift Function and the Friedel Sum Rule
    Kohmoto, Mahito
    Koma, Tohru
    Nakamura, Shu
    [J]. ANNALES HENRI POINCARE, 2013, 14 (05): : 1413 - 1424
  • [35] Bounds on the Spectral Shift Function and the Density of States
    Dirk Hundertmark
    Rowan Killip
    Shu Nakamura
    Peter Stollmann
    Ivan Veselić
    [J]. Communications in Mathematical Physics, 2006, 262 : 489 - 503
  • [36] Phase shift and spectral function from PWA
    Lo, Pok Man
    [J]. MESON 2018 - 15TH INTERNATIONAL WORKSHOP ON MESON PHYSICS, 2019, 199
  • [37] LOCAL VARIANT OF THEORY OF SPECTRAL SHIFT FUNCTION
    KIROV, SM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1972, 205 (01): : 26 - &
  • [38] The Spectral Shift Function and the Friedel Sum Rule
    Mahito Kohmoto
    Tohru Koma
    Shu Nakamura
    [J]. Annales Henri Poincaré, 2013, 14 : 1413 - 1424
  • [40] Spectral gamut mapping and gamut concavity
    Bastani, Behnam
    Funt, Brian
    [J]. FIFTEENTH COLOR IMAGING CONFERENCE: COLOR SCIENCE AND ENGINEERING SYSTEMS, TECHNOLOGIES, AND APPLICATIONS, FINAL PROGRAM AND PROCEEDINGS, 2007, : 218 - +