Graph subspaces and the spectral shift function

被引:32
|
作者
Albeverio, S
Makarov, KA
Motovilov, AK
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] JINR, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[3] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
D O I
10.4153/CJM-2003-020-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a new representation for the solution to the operator Sylvester equation in the form of a Stieltjes operator integral. We also formulate new sufficient conditions for the strong solvability of the operator Riccati equation that ensures the existence of reducing graph subspaces; for block operator matrices. Next, we extend the concept of the Lifshits-Krein spectral shift function associated with a pair of self-adjoint operators to the case of pairs of admissible operators that are similar to self-adjoint operators. Based on this new concept we express the spectral shift function arising in a perturbation problem for block operator matrices in terms of the angular operators associated with the corresponding perturbed and unperturbed eigenspaccs.
引用
收藏
页码:449 / 503
页数:55
相关论文
共 50 条
  • [31] The spectral function of shift-invariant spaces
    Bownik, M
    Rzeszotnik, Z
    MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (02) : 387 - 414
  • [32] The Spectral Shift Function and the Friedel Sum Rule
    Kohmoto, Mahito
    Koma, Tohru
    Nakamura, Shu
    ANNALES HENRI POINCARE, 2013, 14 (05): : 1413 - 1424
  • [33] Estimates for the spectral shift function of the polyharmonic operator
    Pushnitski, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (11) : 5578 - 5592
  • [34] Koplienko Spectral Shift Function on the Unit Circle
    Potapov, Denis
    Sukochev, Fedor
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) : 693 - 702
  • [35] Spectral shift function for magnetic Schrodinger operators
    Raikov, Georgi
    MATHEMATICAL PHYSICS OF QUANTUM MECHANICS: SELECTED AND REFEREED LECTURES FROM QMATH9, 2006, 690 : 451 - +
  • [36] The Spectral Shift Function and the Friedel Sum Rule
    Mahito Kohmoto
    Tohru Koma
    Shu Nakamura
    Annales Henri Poincaré, 2013, 14 : 1413 - 1424
  • [37] LOCAL VARIANT OF THEORY OF SPECTRAL SHIFT FUNCTION
    KIROV, SM
    DOKLADY AKADEMII NAUK SSSR, 1972, 205 (01): : 26 - &
  • [38] Bounds on the Spectral Shift Function and the Density of States
    Dirk Hundertmark
    Rowan Killip
    Shu Nakamura
    Peter Stollmann
    Ivan Veselić
    Communications in Mathematical Physics, 2006, 262 : 489 - 503
  • [39] Phase shift and spectral function from PWA
    Lo, Pok Man
    MESON 2018 - 15TH INTERNATIONAL WORKSHOP ON MESON PHYSICS, 2019, 199