Maximum entropy approach to statistical inference for an ocean acoustic waveguide

被引:13
|
作者
Knobles, D. P. [1 ]
Sagers, J. D. [1 ]
Koch, R. A. [1 ]
机构
[1] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA
来源
关键词
QUANTIFYING UNCERTAINTY; GEOACOUSTIC INVERSION; INFORMATION-THEORY; GIBBS SAMPLER; OPTIMIZATION;
D O I
10.1121/1.3672709
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (beta) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3672709]
引用
收藏
页码:1087 / 1101
页数:15
相关论文
共 50 条
  • [1] Maximum Entropy Method for Ocean Acoustic Tomography
    Shuai Shentu
    Zhao, Hangfang
    Wu, Yuwei
    Zhu, Xiaohua
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [2] ALTERNATIVE APPROACH TO MAXIMUM-ENTROPY INFERENCE
    TIKOCHINSKY, Y
    TISHBY, NZ
    LEVINE, RD
    PHYSICAL REVIEW A, 1984, 30 (05) : 2638 - 2644
  • [3] Statistical inference for unreliable grading using the maximum entropy principle
    Davis, S.
    Loyola, C.
    Peralta, J.
    CHAOS, 2022, 32 (12)
  • [4] Maximum entropy principle and statistical inference on condensed ordered data
    Menendez, M
    Morales, D
    Pardo, L
    STATISTICS & PROBABILITY LETTERS, 1997, 34 (01) : 85 - 93
  • [5] ON THE AXIOMATIC APPROACH TO THE MAXIMUM-ENTROPY PRINCIPLE OF INFERENCE
    KARBELKAR, SN
    PRAMANA, 1986, 26 (04) : 301 - 310
  • [6] MAXIMUM-ENTROPY INFERENCE AND MOMENTUM DENSITY APPROACH
    KOGA, T
    MORITA, M
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (04): : 1933 - 1938
  • [7] Maximum entropy principle and statistical distribution of ocean wave heights
    Wu Kejian and Sun Fu
    ActaOceanologicaSinica, 1996, (01) : 59 - 67
  • [8] On Maximum Entropy and Inference
    Gresele, Luigi
    Marsili, Matteo
    ENTROPY, 2017, 19 (12):
  • [9] A maximum entropy approach to estimation and inference in dynamic models or counting fish in the sea using maximum entropy
    Golan, A
    Judge, G
    Karp, L
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1996, 20 (04): : 559 - 582
  • [10] A maximum entropy approach to adaptive statistical language modelling
    Rosenfeld, R
    COMPUTER SPEECH AND LANGUAGE, 1996, 10 (03): : 187 - 228