A maximum entropy approach to estimation and inference in dynamic models or counting fish in the sea using maximum entropy

被引:40
|
作者
Golan, A
Judge, G
Karp, L
机构
[1] UNIV CALIF BERKELEY, DEPT AGR & RESOURCE ECON, BERKELEY, CA 94720 USA
[2] UNIV CALIF BERKELEY, GIANNINI FDN AGR ECON, BERKELEY, CA 94720 USA
来源
关键词
dynamic discrete time system; optimal control; inverse control problem; maximum entropy principle; time series data;
D O I
10.1016/0165-1889(95)00864-0
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we consider estimation problems based on dynamic discrete time models. The first problem involves noisy state observations, where the state equation and the observation equation are nonlinear. The objective is to estimate the unknown parameters of the state and observation equations and the unknown values of the state variable. Next we consider the problem of estimating the parameters of the objective function and of the state equation in a linear-quadratic control problem. In each case, given time series observations, we suggest a nonlinear inversion procedure that permits the unknown underlying parameters to be estimated. Examples are presented to suggest the operational nature of the results.
引用
收藏
页码:559 / 582
页数:24
相关论文
共 50 条
  • [1] Maximum dynamic entropy models
    Asadi, M
    Ebrahimi, N
    Hamedani, GG
    Soofi, ES
    [J]. JOURNAL OF APPLIED PROBABILITY, 2004, 41 (02) : 379 - 390
  • [2] A maximum entropy approach for estimating nonlinear dynamic models
    Golan, A
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1999, 105 : 227 - 236
  • [3] ENTROPY ESTIMATION USING THE PRINCIPLE OF MAXIMUM ENTROPY
    Behmardi, Behrouz
    Raich, Raviv
    Hero, Alfred O., III
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2008 - 2011
  • [4] On Maximum Entropy and Inference
    Gresele, Luigi
    Marsili, Matteo
    [J]. ENTROPY, 2017, 19 (12):
  • [5] Estimation Bias in Maximum Entropy Models
    Macke, Jakob H.
    Murray, Iain
    Latham, Peter E.
    [J]. ENTROPY, 2013, 15 (08) : 3109 - 3129
  • [6] ALTERNATIVE APPROACH TO MAXIMUM-ENTROPY INFERENCE
    TIKOCHINSKY, Y
    TISHBY, NZ
    LEVINE, RD
    [J]. PHYSICAL REVIEW A, 1984, 30 (05) : 2638 - 2644
  • [7] Network Inference and Maximum Entropy Estimation on Information Diagrams
    Martin, Elliot A.
    Hlinka, Jaroslav
    Meinke, Alexander
    Dechterenko, Filip
    Tintera, Jaroslav
    Oliver, Isaura
    Davidsen, Jorn
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Network Inference and Maximum Entropy Estimation on Information Diagrams
    Elliot A. Martin
    Jaroslav Hlinka
    Alexander Meinke
    Filip Děchtěrenko
    Jaroslav Tintěra
    Isaura Oliver
    Jörn Davidsen
    [J]. Scientific Reports, 7
  • [9] Massive inference and maximum entropy
    Skilling, J
    [J]. MAXIMUM ENTROPY AND BAYESIAN METHODS, 1998, 98 : 1 - 14
  • [10] Generalized maximum entropy estimation of linear models
    Corral, Paul
    Kuehn, Daniel
    Jabir, Ermengarde
    [J]. STATA JOURNAL, 2017, 17 (01): : 240 - 249