Maximum entropy approach to statistical inference for an ocean acoustic waveguide

被引:13
|
作者
Knobles, D. P. [1 ]
Sagers, J. D. [1 ]
Koch, R. A. [1 ]
机构
[1] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA
来源
关键词
QUANTIFYING UNCERTAINTY; GEOACOUSTIC INVERSION; INFORMATION-THEORY; GIBBS SAMPLER; OPTIMIZATION;
D O I
10.1121/1.3672709
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (beta) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3672709]
引用
收藏
页码:1087 / 1101
页数:15
相关论文
共 50 条
  • [31] Pluasible inference based on maximum entropy
    Plesniewicz, GS
    2002 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE SYSTEMS, PROCEEDINGS, 2002, : 101 - 104
  • [32] Continuity of the maximum-entropy inference: Convex geometry and numerical ranges approach
    Rodman, Leiba
    Spitkovsky, Ilya M.
    Szkola, Arleta
    Weis, Stephan
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01) : 015204
  • [33] Inference of the solvation energy parameters of amino acids using maximum entropy approach
    Hoang, Trinh X.
    Seno, Flavio
    Trovato, Antonio
    Banavar, Jayanth R.
    Maritan, Amos
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (03):
  • [34] BAYESIAN INFERENCE, PRIOR INFORMATION ON VOLATILITY, AND OPTION PRICING: A MAXIMUM ENTROPY APPROACH
    Venegas-Martinez, Francisco
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2005, 8 (01) : 1 - 12
  • [35] A maximum entropy approach for integrating semantic information in statistical language models
    Chueh, CH
    Chien, JT
    Wang, HM
    2004 International Symposium on Chinese Spoken Language Processing, Proceedings, 2004, : 309 - 312
  • [36] The surface acoustic waveguide in the Atlantic Ocean
    Bulgakov, NP
    Lomakin, PD
    OKEANOLOGIYA, 1996, 36 (06): : 842 - 847
  • [37] The quasi maximum likelihood approach to statistical inference on a nonstationary multivariate ARFIMA process
    Kamagate, Amadou
    Hili, Ouagnina
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2013, 21 (03) : 305 - 320
  • [38] Principles of maximum entropy and maximum caliber in statistical physics
    Presse, Steve
    Ghosh, Kingshuk
    Lee, Julian
    Dill, Ken A.
    REVIEWS OF MODERN PHYSICS, 2013, 85 (03) : 1115 - 1141
  • [39] On the relationship between Bayesian and maximum entropy inference
    Cheeseman, P
    Stutz, J
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 445 - 461
  • [40] Quantum Maximum Entropy Inference and Hamiltonian Learning
    Gao, Minbo
    Ji, Zhengfeng
    Wei, Fuchao
    arXiv,