Maximum entropy approach to statistical inference for an ocean acoustic waveguide

被引:13
|
作者
Knobles, D. P. [1 ]
Sagers, J. D. [1 ]
Koch, R. A. [1 ]
机构
[1] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA
来源
关键词
QUANTIFYING UNCERTAINTY; GEOACOUSTIC INVERSION; INFORMATION-THEORY; GIBBS SAMPLER; OPTIMIZATION;
D O I
10.1121/1.3672709
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (beta) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3672709]
引用
收藏
页码:1087 / 1101
页数:15
相关论文
共 50 条
  • [21] Maximum entropy inference of seabed properties using waveguide invariant features from surface ships
    Knobles, D. P.
    Neilsen, T. B.
    Wilson, P. S.
    Hodgkiss, W. S.
    Bonnel, J.
    Lin, Y. T.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (05): : 2885 - 2896
  • [22] Application of maximum entropy to statistical inference for inversion of data from a single track segment
    Stotts, Steven A.
    Koch, Robert A.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (02): : 737 - 755
  • [23] General statistical inference for discrete and mixed spaces by an approximate application of the maximum entropy principle
    Yan, L
    Miller, DJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 558 - 573
  • [24] Maximum entropy inference and stimulus generalization
    Myung, IJ
    Shepard, RN
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1996, 40 (04) : 342 - 347
  • [25] MAXIMUM-ENTROPY AND INDUCTIVE INFERENCE
    PARIS, JB
    VENCOVSKA, A
    MAXIMUM ENTROPY AND BAYESIAN METHODS /, 1989, 36 : 397 - 403
  • [26] Continuity of the Maximum-Entropy Inference
    Weis Stephan
    Communications in Mathematical Physics, 2014, 330 : 1263 - 1292
  • [27] In defense of the maximum entropy inference process
    Paris, J
    Vencovska, A
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1997, 17 (01) : 77 - 103
  • [28] Maximum entropy inference with quantified knowledge
    Barnett, Owen
    Paris, Jeff
    LOGIC JOURNAL OF THE IGPL, 2008, 16 (01) : 85 - 98
  • [29] Continuity of the Maximum-Entropy Inference
    Stephan, Weis
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 1263 - 1292
  • [30] Discontinuities in the Maximum-Entropy Inference
    Weis, Stephan
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2013, 1553 : 192 - 199