Maximum entropy approach to statistical inference for an ocean acoustic waveguide

被引:13
|
作者
Knobles, D. P. [1 ]
Sagers, J. D. [1 ]
Koch, R. A. [1 ]
机构
[1] Univ Texas Austin, Appl Res Labs, Austin, TX 78713 USA
来源
关键词
QUANTIFYING UNCERTAINTY; GEOACOUSTIC INVERSION; INFORMATION-THEORY; GIBBS SAMPLER; OPTIMIZATION;
D O I
10.1121/1.3672709
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (beta) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. (C) 2012 Acoustical Society of America. [DOI: 10.1121/1.3672709]
引用
收藏
页码:1087 / 1101
页数:15
相关论文
共 50 条
  • [41] Maximum-Entropy Inference with a Programmable Annealer
    Nicholas Chancellor
    Szilard Szoke
    Walter Vinci
    Gabriel Aeppli
    Paul A. Warburton
    Scientific Reports, 6
  • [42] Erratum to: Continuity of the Maximum-Entropy Inference
    Stephan Weis
    Communications in Mathematical Physics, 2014, 331 : 1301 - 1301
  • [43] Bayesian inference: an approach to statistical inference
    Fraser, D. A. S.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 487 - 496
  • [44] The maximum-entropy inference of solutions to PDEs
    Malaza, ED
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 757 - 765
  • [45] Maximum-Entropy Inference with a Programmable Annealer
    Chancellor, Nicholas
    Szoke, Szilard
    Vinci, Walter
    Aeppli, Gabriel
    Warburton, Paul A.
    SCIENTIFIC REPORTS, 2016, 6
  • [46] Maximum entropy inference for Geographical Information Systems
    Hosni, Hykel
    Masserotti, Maria Vittoria
    Renso, Chiara
    FLEXIBLE DATABASES SUPPORTING IMPRECISION AND UNCERTAINTY, 2006, 203 : 269 - +
  • [47] MAXIMUM-ENTROPY AND STATISTICAL FORCES
    MCLACHLAN, AD
    GAZZETTA CHIMICA ITALIANA, 1987, 117 (01): : 11 - 15
  • [48] From Maximum Entropy to Maximum Entropy Production: A New Approach
    Virgo, Nathaniel
    ENTROPY, 2010, 12 (01) : 107 - 126
  • [49] A Foundational Approach to Generalising the Maximum Entropy Inference Process to the Multi-Agent Context
    Wilmers, George
    ENTROPY, 2015, 17 (02): : 594 - 645
  • [50] HIGHER-ORDER MOMENTS AND THE MAXIMUM-ENTROPY INFERENCE - THE THERMODYNAMIC LIMIT APPROACH
    JAWORSKI, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (04): : 915 - 926