Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [21] Estimation of noise levels for models of chaotic dynamical systems
    Heald, JPM
    Stark, J
    PHYSICAL REVIEW LETTERS, 2000, 84 (11) : 2366 - 2369
  • [22] Estimation of transport times for chaotic dynamical control systems
    Khryashchev, SM
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 528 - 533
  • [23] RIDDLED PARAMETER SPACE IN SPATIOTEMPORAL CHAOTIC DYNAMICAL-SYSTEMS
    LAI, YC
    WINSLOW, RL
    PHYSICAL REVIEW LETTERS, 1994, 72 (11) : 1640 - 1643
  • [24] Parameter estimation using chaotic time series
    Annan, JD
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (05) : 709 - 714
  • [25] The robustness optimization of parameter estimation in chaotic control systems
    Xu, Zhen
    Journal of Engineering Science and Technology Review, 2015, 8 (02) : 61 - 67
  • [26] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [27] Guaranteed parameter set estimation for monotone dynamical systems using hybrid automata
    Meslem, Nacim
    Ramdani, Nacim
    Candau, Yves
    Reliable Computing, 2010, 14 : 88 - 104
  • [28] Estimation of the dimension of chaotic dynamical systems using neural networks and robust location estimate
    Chatzinakos, C.
    Tsouros, C.
    SIMULATION MODELLING PRACTICE AND THEORY, 2015, 51 : 149 - 156
  • [29] Dynamical parameter estimation using realistic photodetection
    Warszawski, P
    Gambetta, J
    Wiseman, HM
    PHYSICAL REVIEW A, 2004, 69 (04): : 042104 - 1
  • [30] Synchronization and cryptography using chaotic dynamical systems
    Chis, O.
    Opris, D.
    BSG PROCEEDINGS 16, 2009, 16 : 47 - 56