Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [31] Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems
    Ahmadi, Mohamadreza
    Mojallali, Hamed
    CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1108 - 1120
  • [32] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li, Li-Xiang
    Peng, Hai-Peng
    Yang, Yi-Xian
    Wang, Xiang-Dong
    Wuli Xuebao/Acta Physica Sinica, 2007, 56 (01): : 51 - 55
  • [33] Parameter estimation for Lorenz chaotic systems based on chaotic ant swarm algorithm
    Li Li-Xiang
    Peng Hai-Peng
    Yang Yi-Xian
    Wang Xiang-Dong
    ACTA PHYSICA SINICA, 2007, 56 (01) : 51 - 55
  • [34] Neural network architectures for parameter estimation of dynamical systems
    Raol, JR
    Madhuranath, H
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (04): : 387 - 394
  • [35] A fluid dynamical approach to the control, synchronization and parameter identification of chaotic systems
    Crispin, Y
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2245 - 2250
  • [36] State and dynamical parameter estimation for open quantum systems
    Gambetta, J.
    Wiseman, H.M.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 421051 - 421051
  • [37] Special Section: Parameter Estimation for Dynamical Systems Introduction
    Gugushvili, Shota
    Klaassen, Chris A. J.
    van der Vaart, Aad W.
    MATHEMATICAL BIOSCIENCES, 2013, 246 (02) : 281 - 282
  • [38] Fast stable parameter estimation for linear dynamical systems
    Carey, M.
    Ramsay, J. O.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 156
  • [39] Bayesian state and parameter estimation of uncertain dynamical systems
    Ching, JY
    Beck, JL
    Porter, KA
    PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (01) : 81 - 96
  • [40] State and dynamical parameter estimation for open quantum systems
    Gambetta, J
    Wiseman, HM
    PHYSICAL REVIEW A, 2001, 64 (04): : 14