Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO

被引:0
|
作者
Ko, Chia-Nan [1 ]
Jau, You-Min [2 ]
Jeng, Jin-Tsong [3 ]
机构
[1] Nan Kai Univ Technol, Dept Automat Engn, Nantou 542, Taiwan
[2] Formosa Adv Technol Co, Yunlin 632, Taiwan
[3] Natl Formosa Univ, Dept Comp Sci & Informat Engn, Yunlin 632, Taiwan
关键词
quantum-behaved particle swarm optimization; chaotic system; parameter estimation; hybrid evolution; adaptive annealing teaming; PARTICLE SWARM OPTIMIZATION; GENETIC ALGORITHM; ADAPTIVE-CONTROL; SYNCHRONIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a quantum-behaved particle swarm optimization (QPSO) based on hybrid evolution (HEQPSO) approach is proposed to estimate parameters of chaotic dynamic systems, in which the proposed HEQPSO algorithm combines the conceptions of genetic algorithm (GA) and adaptive annealing learning algorithm with the QPSO algorithm. That is, the mutation strategy in GA is used for conquering premature; adaptive decaying learning similar to simulated annealing (SA) is adopted for overcoming stagnation problem in searching optimal solutions. Three examples are illustrated to estimate parameters of chaotic dynamical systems using the proposed HEQPSO approach. From the numerical simulations and comparisons with other extant evolutionary methods in Lorenz system, the validity and superiority of the HEQPSO approach are verified. In addition, the effectiveness and robustness of parameter estimations for Chen and Rossler systems are demonstrated by the proposed HEQPSO approach.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [41] JOINT STATE AND PARAMETER ESTIMATION FOR BOOLEAN DYNAMICAL SYSTEMS
    Braga-Neto, Ulisses
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 704 - 707
  • [42] Bayesian parameter estimation for dynamical models in systems biology
    Linden, Nathaniel J.
    Kramer, Boris
    Rangamani, Padmini
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (10)
  • [43] Estimation of control times for weakly chaotic dynamical control systems
    Khryashchev, SM
    2005 International Conference on Physics and Control (PHYSCON), 2005, : 859 - 862
  • [44] Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method
    李向涛
    殷明浩
    Chinese Physics B, 2012, 21 (05) : 117 - 122
  • [45] A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints
    Jafari, Sajad
    Sprott, Julien C.
    Viet-Thanh Pham
    Golpayegani, S. Mohammad Reza Hashemi
    Jafari, Amir Homayoun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (10):
  • [46] Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method
    Li Xiang-Tao
    Yin Ming-Hao
    CHINESE PHYSICS B, 2012, 21 (05)
  • [47] Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm
    Jian Lin
    Chang Chen
    Nonlinear Dynamics, 2014, 76 : 509 - 517
  • [48] An Improved Return Maps Method for Parameter Estimation of Chaotic Systems
    Peng, Yuexi
    Sun, Kehui
    He, Shaobo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (04):
  • [49] An Improved Biogeography Based Optimization for Parameter Estimation of Chaotic Systems
    Wang, Jianan
    Li, Xiangtao
    Su, Zhongming
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (09) : 2192 - 2200
  • [50] Parameter estimation of chaotic systems based on extreme value points
    Zhihuan Chen
    Xiaohui Yuan
    Xu Wang
    Yanbin Yuan
    Pramana, 2019, 92