Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel

被引:5
|
作者
Kavitha, Velusamy [1 ]
Arjunan, Mani Mallika [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] SASTRA Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
Atangana-Baleanu fractional derivative; non-instantaneous impulses; Mittag-Leffler kernel; fixed point theorem; EQUATIONS; EXISTENCE;
D O I
10.3934/math.2022519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of fractional-order functional differential equations with non-instantaneous impulses within the Mittag-Leffler kernel is examined in this manuscript. Non-instantaneous impulses are involved in such equations and the solution semigroup is not compact in Banach spaces. We suppose that the nonlinear term fulfills a non-compactness measure criterion and a local growth constraint. We further assume that non-instantaneous impulsive functions satisfy specific Lipschitz criteria. Finally, an example is given to justify the theoretical results.
引用
收藏
页码:9353 / 9372
页数:20
相关论文
共 50 条
  • [11] FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL
    Allahverd, Bilender P.
    Tuna, Huseyin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 1 - 12
  • [12] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213
  • [13] Design of Mittag-Leffler Kernel-Based Fractional-Order Digital Filter Using Fractional Delay Interpolation
    Gupta, Anmol
    Kumar, Sanjay
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (06) : 3415 - 3445
  • [14] Mittag-Leffler Type Stability of Delay Generalized Proportional Caputo Fractional Differential Equations: Cases of Non-Instantaneous Impulses, Instantaneous Impulses and without Impulses
    Agarwal, Ravi P.
    Hristova, Snezhana
    O'Regan, Donal
    SYMMETRY-BASEL, 2022, 14 (11):
  • [15] Fractal fractional-order derivative for HIV/AIDS model with Mittag-Leffler kernel
    Farman, Muhammad
    Akgul, Ali
    Tekin, Merve Tastan
    Akram, Muhammad Mannan
    Ahmad, Aqeel
    Mahmoud, Emad E.
    Yahia, Ibrahim S.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 10965 - 10980
  • [16] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [17] AN ANALYTICAL STUDY OF FRACTIONAL DELAY IMPULSIVE IMPLICIT SYSTEMS WITH MITTAG-LEFFLER LAW
    Abdeljawad, Thabet
    Shah, Kamal
    Abdo, Mohammed S.
    Jarad, Fahd
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (01) : 31 - 44
  • [18] Non-instantaneous impulsive fractional-order implicit differential equations with random effects
    Yang, Dan
    Wang, JinRong
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (04) : 719 - 741
  • [19] Adaptive Mittag-Leffler stabilization of commensurate fractional-order nonlinear systems
    Ding, Dongsheng
    Qi, Donglian
    Meng, Yao
    Xu, Li
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6920 - 6926
  • [20] Fractional-Order Mittag-Leffler Functions for Solving Multi-dimensional Fractional Pantograph Delay Differential Equations
    Ghasempour, Arezoo
    Ordokhani, Yadollah
    Sabermahani, Sedigheh
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (03) : 885 - 898