Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel

被引:5
|
作者
Kavitha, Velusamy [1 ]
Arjunan, Mani Mallika [2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
机构
[1] Karunya Inst Technol & Sci, Sch Sci Arts Media & Management, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] SASTRA Deemed Univ, Sch Arts Sci & Humanities, Dept Math, Thanjavur 613401, Tamil Nadu, India
[3] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
Atangana-Baleanu fractional derivative; non-instantaneous impulses; Mittag-Leffler kernel; fixed point theorem; EQUATIONS; EXISTENCE;
D O I
10.3934/math.2022519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of fractional-order functional differential equations with non-instantaneous impulses within the Mittag-Leffler kernel is examined in this manuscript. Non-instantaneous impulses are involved in such equations and the solution semigroup is not compact in Banach spaces. We suppose that the nonlinear term fulfills a non-compactness measure criterion and a local growth constraint. We further assume that non-instantaneous impulsive functions satisfy specific Lipschitz criteria. Finally, an example is given to justify the theoretical results.
引用
收藏
页码:9353 / 9372
页数:20
相关论文
共 50 条
  • [41] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [42] Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients
    Xuhuan Wang
    Advances in Difference Equations, 2018
  • [43] Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems
    Ke Yunquan
    Miao Chunfang
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1237 - 1246
  • [44] Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients
    Wang, Xuhuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [45] Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional-order systems
    Abed-Elhameed, Tarek M.
    Aboelenen, Tarek
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [46] Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks
    Yang, Xujun
    Li, Chuandong
    Song, Qiankun
    Huang, Tingwen
    Chen, Xiaofeng
    NEUROCOMPUTING, 2016, 207 : 276 - 286
  • [47] FRACTIONAL-ORDER EXTREME LEARNING MACHINE WITH MITTAG-LEFFLER DISTRIBUTION
    Niu, Haoyu
    Chen, Yuquan
    Chen, YangQuan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 9, 2019,
  • [48] Mittag–Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    K. Mathiyalagan
    Yong-Ki Ma
    Iranian Journal of Science, 2023, 47 : 99 - 108
  • [49] Projective synchronization of fractional-order quaternion-valued neural networks with Mittag-Leffler kernel
    Ansari, Md Samshad Hussain
    Malik, Muslim
    Nieto, Juan J.
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2025,
  • [50] Mittag-Leffler stability for a new coupled system of fractional-order differential equations on network
    Gao, Yang
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,